
 152

Developing a Computer Science-specific

Learning Taxonomy
Ursula Fuller

Computing Laboratory
University of Kent

Canterbury CT2 7NF
United Kingdom

U.D.Fuller@kent.ac.uk

Colin G. Johnson

Computing Laboratory
University of Kent

Canterbury CT2 7NF
United Kingdom

C.G.Johnson@kent.ac.uk

Tuukka Ahoniemi

Institute of Software Systems
Tampere University of Technology

Tampere, Finland

tuukka.ahoniemi@tut.fi

Diana Cukierman

School of Computing Science
Simon Fraser University

Burnaby, British Columbia
Canada

diana@cs.sfu.ca

Isidoro Hernán-Losada

Lenguajes y Sistemas Informáticos
Universidad Rey Juan Carlos

Madrid
Spain

Isidoro.hernan@urjc.es

Jana Jackova

Faculty of Management Science
and Informatics

University of Zilina /Slovak
University of Technology
Zilina, Slovak Republic

Jana.Jackova@fri.uniza.sk

Essi Lahtinen

Institute of Software Systems
Tampere University of Technology

Tampere
Finland

essi.lahtinen@tut.fi

Tracy L. Lewis

Information Technology
Radford University
Radford, VA 24142

USA

Tlewis32@radford.edu

Donna McGee Thompson

Student Learning Commons
Simon Fraser University

Burnaby, British Columbia
Canada

dmcthomp@sfu.ca

Charles Riedesel

Computer Science & Engineering
University of Nebraska Lincoln

259 Avery Hall
Lincoln, Nebraska 68588-0115

USA

riedesel@cse.unl.edu

Errol Thompson

Massey University
Wellington

New Zealand

kiwiet@computer.org

ABSTRACT
Bloom’s taxonomy of the cognitive domain and the SOLO
taxonomy are being increasingly widely used in the design and
assessment of courses, but there are some drawbacks to their use
in computer science. This paper reviews the literature on
educational taxonomies and their use in computer science
education, identifies some of the problems that arise, proposes a
new taxonomy and discusses how this can be used in
application-oriented courses such as programming.

Keywords
Computer science education, taxonomies of learning, curricula,
assessment, credit transfer, benchmarking

Categories and Subject Descriptors
K.3.2 Computer and Information Science Education

General Terms
None

1. INTRODUCTION

1.1 Motivation
Educational taxonomies are a useful tool in developing learning
objectives and assessing student attainment. They can also be
deployed in educational research, for example to classify test
items and investigate the range of learning these are measuring.
The well-known educational taxonomies are generic and rely on
the assumption that the hierarchy of learning outcomes is the

 153

same in all subjects, from art history to zoology. However,
taxonomies are not simple to use and researchers find it hard to
reach agreement on the classification of items, which limits their
benefits to instructors [27]. This paper reports the work of an
ITiCSE Working Group investigating the hypothesis that the
hierarchy of learning outcomes in computer science is not well
captured by existing generic taxonomies and that computer
science education would be better served by the development of
a computer science-specific taxonomy.

1.2 What is an educational taxonomy?
A taxonomy is a classification system that is ordered in some
way. Linnaeus’s taxonomy arranged living organisms into a tree-
structured hierarchy. This gave biologists a tool to help them
understand the relationship between members of the plant and
animal kingdoms and to communicate accurately about them [7].
Taxonomies of educational objectives can similarly be used to
provide a shared language for describing learning outcomes and
performance in assessments. Unlike the biological taxonomy,
educational taxonomies are not usually tree-structured. To a
greater or lesser extent they divide educational objectives into
three domains, cognitive, affective and psychomotor. Some, such
as Bloom’s taxonomy, treat each of these as a one-dimensional
continuum [7], others, like the revised Bloom’s taxonomy,
describe the cognitive domain using a matrix [3]. Yet others,
like the SOLO taxonomy, use a set of categories that describe a
mixture of quantitative and qualitative differences between the
performance of students [5] and there are also taxonomies that
claim they can be applied equally to all three domains.

1.3 What taxonomies are used for
Learning taxonomies describe and categorize the stages in
cognitive, affective and other dimensions that an individual may
be at as part of a learning process. Paraphrasing Biggs [6], we
can say that they help with “understanding about understanding”
and “communicating about understanding”. Thus learning
taxonomies can be seen as a language which can be used in a
variety of educational contexts.

Learning taxonomies can be used to define the curriculum
objectives of a course, so that it is not only described on the
basis of the topics to be covered, but also in terms of the desired
level of understanding for each topic [48]. Computing programs
accredited by ABET have to be specified in terms of measurable
objectives, including expected outcomes for graduates [14].
More generally, the use of learning outcomes is mandated in the
countries of the European Higher Education Area [1,8,68] and is
increasingly prevalent in the US and elsewhere [15].

Learning taxonomies are widely used to describe the learning
stages at which a learner is operating for a certain topic. For
example, a student may be capable of reciting by heart what
recursion is but not capable of implementing a recursive
algorithm. An instructor may aim to have his or her students
learn a topic at a certain level in a taxonomy (e.g. students may
be expected to be able to comprehend the concept of recursion
without necessarily applying it). Once this has been done, the
instructor can assess students at the chosen level through a
suitable choice of questions or examples [39]. This approach is
encouraged by teacher-trainers [26]. Furthermore, the students’
answers can be analyzed as belonging to one level or another;
such answers can help the instructor revise his or her teaching

techniques to better guide students to accomplish a certain
learning stage.

Learning taxonomies have been used in many other contexts,
such as introducing students to a learning taxonomy to raise
their awareness and improve their level of understanding and
their studying techniques [16,71]. They are also used to
structure exercises in computer-based and computer-assisted
instruction [21,36].

1.4 Weaknesses of taxonomies from a CS

standpoint
Learning taxonomies, particularly Bloom’s taxonomy of the
cognitive domain, have had a considerable impact on curriculum
and assessment design in the last fifty years. However, this does
not mean that their use is unproblematic. The classification of a
specific learning outcome or test item depends on its context. A
task that challenges the analysis and synthesis skills of a
beginner becomes routine application of knowledge for a more
advanced learner. Similarly, a student who has been taught how
to solve a problem that is extremely similar to the test item will
demonstrate skills lower in the taxonomic order than one who is
solving it from first principles. This is a generic problem but
computer science-specific difficulties also manifest themselves.

Johnson and Fuller [27] found that colleagues disagreed about
the relative difficulty of cognitive tasks in computer science. A
significant proportion felt that it is easier to apply knowledge to
solve simple problems than to describe this knowledge. They
also found that computer science instructors did not find the
terms synthesis and evaluation useful in describing learning
outcomes and assessment tasks for programming courses,
especially at the introductory level, instead seeing the
application of knowledge as the highest skill that they should be
developing. Close questioning revealed that application, as used
by these colleagues, did in fact subsume analysis, synthesis and
evaluation, leading Johnson and Fuller to propose a revised
taxonomy with higher application as the highest level.

Lahtinen’s recent work [37] shows that the ordering of cognitive
tasks in Bloom’s taxonomy is a very poor fit for the learning
trajectories of some students tackling programming for the first
time. In addition, the use of taxonomies is concentrated on the
cognitive domain, even though learning in the affective domain
is also essential for the formation of computer science
practitioners. These problems led the working group to
investigate whether a subject specific taxonomy would be of
more use to computer science instructors than the existing
generic ones.

1.5 Methodology
In order to investigate this hypothesis, our working group has
reviewed a number of taxonomies described in the educational
literature, together with the range of uses to which they are put.
We have also reviewed studies in the computer science
education research literature that use one or more taxonomies as
an analytic tool. In addition we have looked at the practice of
assessment in computer science both for novice programming
and in two other typical subject areas, drawing on the experience
of members of the working group and their colleagues. We have
used this evidence to propose a new, computer science-specific
taxonomy and to make recommendations about how it might be
used. We concentrated on the cognitive domain because that is

 154

the area in which there is existing research on the use of
taxonomies in computer science.

2. REVIEW OF EXISTING TAXONOMIES
Educational researchers have developed a range of taxonomies,
developmental stages and instructional design strategies aimed
at helping educators develop learning outcomes, educational
resources, and assessments. These taxonomies have been based
on a range of educational theories and research. Readers
interested in the theoretical foundations for the taxonomies
reviewed by the working group should direct their attention to
the referenced papers.

2.1 Cognitive domain

2.1.1 Bloom and revision
Of these taxonomies, the most widely cited in the literature
reviewed by the working group is the original Bloom’s
taxonomy [7]. Bloom’s taxonomy has six categories, where each
category builds on the lower ones:

 1. Knowledge
2. Comprehension
3. Application
4. Analysis
5. Synthesis

A
bi

lit
ie

s
an

d
sk

il
ls

6. Evaluation
Bloom’s taxonomy has since been revised by Anderson et al [3].
The authors changed the nouns listed in the Bloom’s model into
verbs, to correspond with the ways learning objectives are
typically described.

Revised Bloom’s taxonomy [3]

These taxonomies do not define a sequence of instruction but
define levels of performance that might be expected for any
given content element. A learner performing at a higher level is
expected to be able to perform at the lower levels in the
cognitive hierarchy. This could be interpreted as implying a
sequential learning process. However, the taxonomy doesn’t rule
out the use of an iterative approach to learning the content.

The authors of the revised taxonomy acknowledge that there is a
possible overlap in terms of the cognitive complexity among the
higher level categories of the hierarchy. However, the midpoint
of each of the higher level categories is seen as being more
complex than the lower category [32,67]. For example, the
cognitive process of Explaining in the Understand category may
require a higher cognitive load than Executing in the Apply
category in some contexts.

A key difference between the revised taxonomy and the original
taxonomy is that the type of knowledge elements is also defined:
A. Factual knowledge, B. Conceptual knowledge, C. Procedural

knowledge, D. Metacognitive knowledge. This provides a
matrix into which learning objectives are mapped.

Revised Bloom’s Taxonomy [67]

2.1.2 Niemierko , Tollingerova, Bespalko
Other taxonomies of learning objectives have extended Bloom’s
taxonomy.

Niemierko and others claim that the three highest Bloom
categories (higher thinking processes) cannot be ordered
hierarchically in science subjects [50]. This has been used for
the development of curricula in e.g. Slovakia, the Czech
Republic and Poland [35]. He developed the “ABC” taxonomy
of learning objectives [50] that are organized in two dimensions:

Levels Categories of learning objectives

I. Knowledge A. Remembering of knowledge

B. Understanding of knowledge

II. Abilities

and skills

C. Application of knowledge in typical problem situations

D. Application of knowledge in unfamiliar problem situations

Niemierko’s “ABC” taxonomy of learning objectives [50]

Applications in category D include the analysis, synthesis, and
evaluation categories of Bloom’s taxonomy.

Tollingerova’s taxonomy [35] has five, hierarchically-ordered
operation categories : 1. memory reproduction of knowledge,
2. easy thought operations with knowledge, 3. difficult thought
operations with knowledge, 4. communication of knowledge, 5.
creative thinking

According to Bespalko learning objectives can be expressed in
two stages of abstraction and four activity levels [35, 50]:

I. Reproductive activities: 1. recognition (identification), 2.
reproduction

II. Productive activities: 3. application, 4. creativity
(transformation)

2.1.3 Critical thinking
Some researchers see Bloom’s taxonomy as not giving enough
emphasis to aspects of critical thinking. Critical thinking goes
beyond the cognitive categories of the original Bloom’s
taxonomy to incorporate attributes of reflective judgment with
respect to the value of what is being learned and to make

Categories Cognitive processes

1. Remember Recognizing, Recalling

2. Understand Interpreting, Exemplifying, Classifying,
Summarizing, Inferring, Comparing, Explaining

3. Apply Executing, Implementing

4. Analyze Differentiating, Organizing, Attributing

5. Evaluate Checking, Critiquing

6. Create Generating, Planning, Producing

 155

judgments on the reliability and authority of the associated
knowledge.

The reflective judgement taxonomy by King and Kitchener has a
total of seven stages that fall into three groups indicative of pre-

reflective thought (Stages 1-3), quasireflective thought (Stages 4
and 5), and reflective thought (Stages 6 and 7) [29].

Facione’s critical thinking taxonomy is more closely aligned
with Bloom’s taxonomy. It lists six critical thinking skills with
appropriate sub-skills. To become a good critical thinker
exhibiting self regulation, the person must engage in
interpretation, analysis, evaluation, inference, explanation, and
meta-cognitive self-regulation [18]. The revised Bloom’s
taxonomy [3] endeavours to capture some of these skills through
the use of the knowledge dimensions and the inclusion of the
meta-cognitive knowledge.

2.2 Unified domain taxonomy
There have been a number of attempts to produce a taxonomy
that covers the cognitive (C), affective (A) and psychomotor (P)
domains. The work of De Block [35] is an example of this
approach:

1 Knowledge
C: Repeat, define, show, name, etc.
A: Listen to opinion of others, accept notes, realize, etc.
P: Show, imitate, understand sound, smell, taste, etc.

2 Understanding
C: Describe, characterize, say in own words, explain,

compare, etc.
A: Accept opinions of others, answer questions, react to

rules correctly, ask relevant questions, participate, etc.
P: Demonstrate a principle, put together and disassemble

something that is known, etc.
3 Application

C: Solve, calculate, number, translate, illustrate, analyze,

make, etc.
A: React to rules automatically, accept norms and values,

cooperate in a group, apply norms and rules, etc.
P: Make, produce, try, repair, adapt, cook, cut, put together

and disassemble something that is new, etc.
4 Integration

C: Design, create, summarize, judge, decide, plan, etc.
A: React to rules spontaneously, apply norms spontaneously

and behave under rules, initiate cooperation, find

satisfaction in behavior and work under society’s rules,

etc.
P: Perform an activity fluently, without hesitation, without

mistakes, automatically; work precisely, quickly, etc.

Niemierko [50] describes the possibility of synthesizing an
overall educational taxonomy.

2.3 Structure of the Observed Learning

Outcome (SOLO)
The SOLO taxonomy makes no reference to cognitive
characteristics of the learner’s performance or to the affective
dimension. It focuses on the content of the learner’s response to
what is being assessed. It endeavours to identify the nature of
that content and the structural relationships within that content.
The content could be designed to assess knowledge, cognitive

skills, or underlying values. The taxonomy can be used to
establish the relationships expected between these different
types of content. It is left up to the assessor or course designer to
define the type of content expected.

The SOLO levels are:

§ Prestructural – not related to topic – disjoint – missed the
point

§ Unistructural – simple meaning, naming, focussing on one
issue in a complex case

§ Multistructural – ‘shopping list’ – disorganised collection
of items

§ Relational – understanding, using a concept that integrates
a collection of data, understanding how to apply the
concept to a familiar data set or to a problem

§ Extended abstract – relating to existing principle, so that
unseen problems can be handled, going beyond existing
principles [5,6].

In defining these categories, Biggs and Collis [5] use three
crucial characteristics. These are:

1. capacity – how many things are handled in the content
– “a quantitative increase in what is grasped” [6]

2. relating operation – the way in which the content is
related to the intended purpose – the integration of the
components within the content

3. consistency and closure – the drawing of conclusions
or bringing to closure that is consistent

Using SOLO in assessment can provide a mechanism for holistic
marking [69,70]. However, Biggs [6] provides examples of
assessment strategies that use items targeted at specific SOLO
levels as well as more holistic strategies.

The lower levels of the SOLO taxonomy (unistructural and
multistructural) can be used to focus on individual items or
attributes of what is being assessed. The higher levels with their
emphasis on integration and extension of principles require a
broader range of content or attributes to be examined.

The SOLO taxonomy makes no attempt to infer a cognitive
processing level although it might be argued that to perform at a
relational level or an extended abstract level involves greater
cognitive processing than that required for unistructural or
multistructural since the learners not only have to be able to
recall items, they have to show the relationship among items
(relational) and draw conclusions (extended abstract).

2.4 Instructional Design
Instructional designers use taxonomy concepts to guide course
creation. Merrill proposed the Component Display Theory
(CDT) for instructional design [46,47]. It classifies learning
along two dimensions: content (facts, concepts, procedures, and
principles) and performance (remembering, using, and
generalizing). A complete lesson would consist of an objective
followed by some combination of rules, examples, recall,
practice, feedback, helps and mnemonics appropriate to the
subject matter and learning task

 156

Find

Use

Remember

L
ev

el
 o

f
p

er
fo

rm
a
n

ce

F
ac

t

C
on

ce
pt

Pr
oc

ed
ur e

Pr
in

ci
pl

e

 Type of content

The types of content are very similar to the knowledge
dimensions of the revised cognitive Bloom’s taxonomy [3]. The
Use performance level focuses on an ability to use an existing
framework to process input. The Find performance level focuses
on the ability to create a new framework through the adaptation
of existing rules. This has similarities to the Apply and Create
categories of the revised cognitive taxonomy.

2.5 Discussion of existing taxonomies
By far the most widely used of the taxonomies reviewed above
is the original work by Bloom et al. Its strengths are that it is
based on extensive analysis of test items, its simplicity, and its
identification of distinct, recognizable aspects of the cognitive
domain. Instructors have taken it to mean that they can assess
comprehension, application, analysis, synthesis and evaluation
and that this hierarchy maps onto a grading scheme. The
weaknesses of the original Bloom’s taxonomy is that the
categories have not always proved easy to apply, that there is
significant overlap between the categories and debate about the
order in the hierarchy of analysis, synthesis and evaluation. In
addition, its simplicity means that each category combines
different types of cognitive activity.

There are many variants of the original Bloom. There is
evidence that the revised category names used by Anderson et al
have been adopted by instructors but it is not clear that the
added complexity of distinguishing aspects of the cognitive
domain such as procedural and metacognitive knowledge
outweighs the simplicity of the original scheme. Facione’s work
is similar in its approach to improving on Bloom.

The work of Niemierko, Tollingerova and Bespalko has strong
similarities to Bloom but produces two separate dimensions
related to knowing and applying. This addresses the difficulty of
regarding Bloom’s categories as a single hierarchy but does not
map so nicely onto a six or seven point scale. Component
display theory identifies essentially the same dimensions but is
specialized for use in computer-based instruction.

SOLO is very different to the other taxonomies reviewed above
because it deals with the content of the learner’s response to
what is being assessed. Its holistic approach means that it can be
used to assess performance in the affective and psychomotor, as
well as cognitive, domains. By comparison with Bloom, it may
be regarded as giving less guidance to instructors because is
does not map onto categories of cognitive performance that can
be singled out for assessment. Its strength is in encouraging a
holistic approach that supports deep learning, its weakness that

there is not yet much reported experience of using it for
assessment in a range of subjects.

3. THE USE OF TAXONOMIES IN

COMPUTER SCIENCE EDUCATION

LITERATURE

3.1 Existing Literature on Taxonomies for

Computer Science
A number of papers have explored how various generic
taxonomies can be applied to computing topics. In particular,
there are three ways in which such taxonomies have been
applied: to the design of courses at various levels of granularity
in time, the design of teaching, learning and assessment
materials, and, finally, the analysis of student responses to
exercises. In this section, we review work on these topics.

3.1.1 Design of Courses
Some authors propose using these taxonomies for the design or
evaluation of courses. Indeed, the notation of educational
objectives was the original purpose of Bloom’s taxonomy. This
can be at a number of different granularities: it could be used for
describing student progress through a single topic, through a
course, or through a whole degree programme.

Howard et al. [23] propose to clearly identify goals for every
lesson, and to assign them to a given level of the taxonomy.
Most lessons have a number of knowledge goals, but achieving
other levels varies during the course. Plotting the highest level
of each level in a graph shows the evolution of the course
according to knowledge depth. Scott [65] states that assessment
should measure the level achieved by each student, and the
grade should depend on his/her achievement. In particular, he
notices that his teaching has been covering levels 3 (application)
and 6 (evaluation). Buck and Stucki [11] outline an inside/out
pedagogical approach based on Bloom's taxonomy for cognitive
development. This framework allows students to comprehend
the basic concepts before they are asked to apply them.

Doran and Langan [17] report on a project that implemented a
cognitive-based approach (using Bloom’s taxonomy) to the first
two years of a computing degree, using strategic sequencing
(spiral) and associated mastery levels of key topics. The project
also investigated the use of structured closed labs, with frequent
feedback and early use of teams. They used course micro-
objectives mapped to specific levels in Bloom’s taxonomy.
Machanick [43] describe his experience of applying Bloom's
Taxonomy in design three different courses.

Some applications have applied the taxonomy across a
programme of study for a degree. For example, Sanders &
Mueller [64] discuss the redesign of the curriculum at his
university to bring material that is concerned mainly with lower
Bloom levels to the early years of a degree programme, and vice
versa. In other areas, Bloom's taxonomy has also been used to
redesign whole curricula. In particular, Reynolds & Fox [62]
extend a curriculum in Information Technology based on the
ACM Curriculum’91 to include new knowledge units and
describe they fit it in Bloom taxonomy levels. In the same area,
Azuma et al. [4] extend this taxonomy in order to apply it to
Software Engineering. Manaris & McCauley [44] presented one
possible implementation of the HCI curricular guidelines

 157

included in CC’01. This implementation employs Bloom’s
taxonomy to identify levels of student competence for each of
the learning objectives.

Oliver et al. [51] discuss the idea of a Bloom Rating for courses
of study. The course assessments are analysed by instructors and
the level in Bloom’s taxonomy that the assessment is designed
to engage the students at. These are then averaged for all of the
assessments on the course, and this is termed the Bloom rating.
This is then applied to looking at how courses develop in the
cognitive demands that they make on the students over the three
years of their degree programme. They note that some modules
early in the degree programme have a high rating, and some
towards the end have a low rating.

This paper makes a number of assumptions about the use of
Bloom’s taxonomy. Firstly, that the course should develop
students’ cognitive skills over the (three) years of the course,
engaging students at a low cognitive level at the beginning of
the degree and working towards the higher levels towards the
end of the degree. There is also the assumption that an
assessment works at one particular level. A danger with this is
that becomes normative, and that it is used as a “quality
measure” – the higher the Bloom rating, the better the course.

Johnson and Fuller [27] report on two studies of computer
science courses carried out by students in the first year of
computer science studies within a university: a panel of
assessments rated by instructors, and interviews with the
instructors on each course. A significant conclusion from these
studies is that the most significant level for many of the courses
studied is the application level; applying techniques to the
creation of artefacts would seem to be at the core of what the
study of computing is about. However, for complex application
problems students need to use skills that would be classified at
the analysis/synthesis/evaluation levels. The authors propose a
new level of “higher application” for subjects such as
computing. This encompasses cognitive activity that is aimed a
solving a problem, yet which needs the traditionally “higher
level” skills that engage students at the
analysis/synthesis/evaluation level.

A recent paper by Kramer [31] identifies abstraction as a core
skill that is important for many areas of computer science. The
author discusses Piaget’s model of cognitive development,
which consists of four stages: sensorimotor, pre-operational,
concrete operational, and formal operational [54]. His argument
is based on studies that show that a significant percentage of the
general population do not develop this final stage in the
taxonomy: they do not progress to the stage of making
significant use of the formal operational processes. Following on
from this, he argues that getting students to this stage is a
prerequisite for the students studying many aspects of
computing, and that we should devise courses that ensure that
students reach this stage of general cognitive engagement with
material that they encounter before teaching most computing
topics, or that we could use measures of abstraction ability as a
way of selecting students for computing courses.

Finally, Rademacher [56] reports research in progress includes
the conceptual development of a model and metrics to determine
and classify the level of cognition and added value included in
selected knowledge management (KM) systems. He joins
Bloom’s Taxonomy of Cognitive Objectives and Greenwood’s

Six C’s of the Knowledge Supply Chain in order to contribute a
new approach for assessing the role of knowledge management
systems including value, skill sets, learning, modeling, and
media.

3.1.2 Design of Teaching Materials and

Assessments
Another way in which these taxonomies are used is in designing
teaching materials and assessments. For example, structuring
materials to help students to move through a taxonomy, or
structuring assessments so that they assess a wide range of levels
of engagement with this material.

A number of authors have discussed how learning taxonomies
can be used for assessment design. Lister [38] notes that typical
assessments in introductory programming leap straight into
higher levels of Bloom’s taxonomy, and presents a course
design and examples of assessments that move students through
the Bloom hierarchy. Thompson [70] reports on the use of the
SOLO taxonomy to structure the marking scheme for a
programming course, and in particular using this taxonomy to
help students understand the grade that they have been assigned.
Farthing et al. [19] discuss the design of a new kind of multiple-
choice question (permutational MCQs) that can be used more
readily than traditional questions to assess higher-level skills.

Lahtinen and Ahoniemi [36] are concerned with the use of
taxonomies for the design of visualizations to help students
understand programming not only in the elementary cognitive
levels but to support their progress further also. They look at
each level of Bloom’s taxonomy, and discuss the kinds of visual
material that would be relevant to presenting and interacting
with material at each level resulting into a categorization of
program visualization examples. Naps et al. [49] make a
comprehensive study about the educational effectiveness of
visualizations for computer programming education. They
identify a set of good practices that have proved to be
educationally effective. Bloom’s taxonomy is proposed as a
standard framework that educators can use to measure such
effectiveness. Ihantola et al. [25] have developed a taxonomy of
algorithm visualizations: whilst not a “learning taxonomy” as
such (it does not give a structure for how students’ development
is meant to be guided by these visualizations) it could be used
alongside such a learning taxonomy to investigate the match
between students’ development as learners and the technology
required to support that development.

Some authors have designed software tools to assist at some
level. Thus, Kumar [34] has developed a set of applets (named
“problets”) to assist at the application level for well-delimited
topics. Each problet allows randomly generating instances of a
problem involving a concept, a question to be answered and
some kind of visualization or interaction to help solving the
problem.

Buck and Stucki [11] extend the JKarelRobot environment to
give support to all the levels in Bloom’s taxonomy. For instance,
students are continuously asked the next statement to be
executed by Karel. At the end of the run, they are given a score
that shows their competence at the comprehension level. Ala-
Mutka [2] reports a different automated assessment approach.
Facts: there exist different objectives and evaluations but these

 158

objectives are not reached. The reasons are: There aren’t
obvious and joint criteria and the design of tasks is not careful.
A possible solution is to design the objectives, the tasks and the
assessments with some obvious criteria based in Bloom's
Taxonomy.

Hernán-Losada et al. [21] describe insecurities and ambiguities
that they found in applying taxonomies to the design of
educational tools. They may classify difficulties into two
classes: terminology and the inherent complexity of
programming itself. They propose a guide to use the taxonomy
within the Computer Science. Moving on from this, in their
more recent paper [22] they describe their experiences with
designing and developing learning tools inspired by the
taxonomy of Bloom. They present a generic framework for the
design of these applications and describe the tools developed for
the learning of object-oriented programming.

3.1.3 Analysis of Student Responses to Exercises,

and Measuring Student Progress
Whalley et al. [72] investigate the results of applying the Bloom
and SOLO taxonomies to analysing the results of a
programming exercise that was carried out by students at a
number of universities. Nine of the questions in this exercise
were multiple choice, the final was a free-text question that
required students to give an English description of a piece of
code. The conclusions of this paper are that the difficulty of
these questions correlates strongly with their placement on the
taxonomies (in that most students can tackle the lower-rated
questions, a subset of those can perform on the higher level
questions, then a subset of them on the highest). A particular
item of interest is the free-text question that was asked at the
end. The authors use SOLO to analyse the responses to these
questions. This is carried further in [43] where they analyse the
responses to this question and to a further question, related to
classifying programs and investigating similarity between
programs, and examine students responses using the SOLO
taxonomy.

Lister et al. [42] report on the authors use of the SOLO
taxonomy to describe differences in the way students and
educators solve small code reading exercises. Data was collected
in the form of written and think-aloud responses from students
(novices) and educators (experts), using exam questions. During
analysis, the responses were mapped to the different levels of the
SOLO taxonomy. From think-aloud responses, the authors
found that educators tended to manifest a SOLO relational
response on small reading problems, whereas students tended to
manifest a multistructural response. These results are consistent
with the literature on the psychology of programming, but the
work in this paper extends on these findings by analyzing the
design of exam questions.

Lister and Leaney [39,40] also notice that typical programming
assignments correspond to level 5 (synthesis). Instead, they
group the six levels of the taxonomy into three pairs, so that
achieving a level in a given pair yields the corresponding A, B
or C grade. In addition, they identify grading practices adequate
to each pair, namely lab exercises and exams, multiple choice
exams, assignments, projects, and peer review. These ideas have
been applied by Box [9], in particular emphasizing the way in
which taxonomies can be used to provide a transparent means by
which assignments can be explained to students and students can

understand their grade and how performance fits into overall
progress on courses. In particular, this paper gives
comprehensive guidance to lecturers who are considering using
Bloom-style structuring for their assessments. Cukierman and
McGee Thompson [16] report on the use of Bloom’s taxonomy
directly with students, in order to help students devise learning
strategies to help with their learning of topics in computer
science.

The paper by Burgess [13] reports on the author’s experience
with using Bloom’s taxonomy in marking assessments. The
grade given to an assessment depends on the level in Bloom’s
taxonomy that the student’s response suggests that that student
is working at.

Buckley and Exton [12] review Bloom’s taxonomy as a richer
descriptive framework for programmers’ knowledge of code and
illustrates how various software maintenance tasks map to
knowledge levels in this hierarchy. A pilot study (with 2
students) is presented showing how participants’ knowledge of
software may differ at various levels of this hierarchy.

4. EXAMPLES OF THE USE

TAXONOMIES IN SOME CANONICAL

COMPUTER SCIENCE COURSES
The interaction between typical computing learning outcomes
and taxonomies can be further illustrated through examples.
This subsection presents three such examples, chosen to be
typical of courses that appear in a wide range of computing
curricula. One is a first year course, the second is from material
that is often given at an intermediate level and the third
demonstrates features of final year courses. They are all based
on actual courses but have been adapted to suit the needs of this
paper. The discussion covers the use of Bloom’s taxonomy of
the cognitive domain and the SOLO taxonomy, because these
are the only ones that we found being used in practice in the
computer science education literature. In addition, there is some
consideration of Bloom’s taxonomy of the affective domain
because this could improve constructive alignment between the
values instructors want to instill and the ways we assess
computing students.

4.1 Introductory Programming Example

4.1.1 Description of course
This is typical introductory object-oriented programming course.
It lasts for a single semester and takes an objects-first approach
to teaching Java programming, closely following a well-known
textbook. The students have lectures and classes (labs) each
week. The lectures, which are optional, introduce new concepts.
Students are expected to do programming exercises in the class
sessions and finish these off in their own time. Some of the class
exercises are marked and these marks contribute 20% of the
final course result. The main assessment for the course is
currently a closed book examination that contains a mixture of
multiple choice questions and essay answers.

4.1.2 Learning Outcomes
At the end of the course students will be able to

• Use an object-oriented programming language to write
programs.

 159

• Discuss the quality of solutions through consideration
of issues such as encapsulation, cohesion and
coupling.

• Recognise and be guided by social, professional and
ethical issues and guidelines

4.1.3 Assessment using Bloom in the cognitive

domain
Bloom’s taxonomy in the cognitive domain is conventionally
used to assess the first two learning outcomes given above. A
typical approach is to write assessment items that are intended to
assess at a single level and then to award some fraction of the
total number of marks available, depending on how complete the
student’s response is seen as being. It is relatively unusual to
have tasks that are seen as giving students the chance to respond
at more than one level, along with assessment criteria indicating
which level the student is seen as operating at.

4.1.3.1 Example 1
Consider the following class definition.

public class Car
{

public int numberOfSeats;
private String model;
private int engineCode;
public Car(String model)
{

model = model;
}
public int getSeats()
{

return numberOfSeats;
}

private String getModel()
{

return model;
}

public void setEngineCode(int code)
{

int n = code * 2;
if(code >= 100) {

engineCode = n;
}
else {

engineCode = code;
}

}
}

Decide which statement is correct (A, B or C). Only one
statement is correct.

Accessors / mutators

(a) The method getSeats is an accessor
method.

(b) The method getSeats is a mutator method.

(c) The method getSeats is both an accessor
and a mutator method.

Discussion This test item could be assessing recall if it is using
an example that the students have seen before. If they have not,
it could be a simple example of application of a rule. A
conscientious, or over anxious, student could have come across
this example before even if it was not used in lectures. A student
who did not bother to go to lectures may be applying thise rule
from first principles, even if the examiner expects students to be
using recall. It is thus hard in practice to determine which of
these two Bloom cognitive levels a student is performing at.

4.1.3.2 Example 2
In designing an application, the concept of coupling is
important. One guideline states that you should have
weak coupling. What is coupling, and why should you
have weak coupling?

Discussion This tests whether students have reached the
“explain” level. In the unlikely event that the reasons for weak
coupling have not been spelt out in lectures, it could be at a
considerably higher level.

4.1.3.3 Example 3
Write a method to calculate the winnings of a lottery ticket
with three integers, a, b and c on it. The header of the

method is

public int lotteryTicket(int a, int b, int
c)

If the numbers are all different from each other, the
method returns 0. If all of the numbers are the same, the
method returns 20. If two of the numbers are the same,
the method returns 10. For example:

lotteryTicket(1, 2, 3) → 0

lotteryTicket(2, 2, 2) → 20

lotteryTicket(1, 1, 2) → 10

Write a full implementation of this method.

Discussion The instructor is likely to expect this to be
straightforward example of apply.

4.1.4 Assessment using SOLO
Example 1 above focuses on a single piece of information, ie
recognizing the naming of an accessor method. This means that
it can be used to assess at the unistructural level.

4.1.4.1 Example 4
Provide two examples of loop constructs that can be used
in a method to calculate the minimum value in an array.
The header of the method is

 public int min(int []a)

Discussion this test item requires identification of two distinct
loop constructs but not necessarily working code. This means
that it can be used to assess at the multistructural level. If the
question asked the student to write a routine that calculates the
minimum value then it is targeting a relational response since to
develop working code requires an understanding of how
different constructs work together.

4.1.4.2 Example5
In plain English, explain what the following

 160

segment of code does:
bool bValid = true;
 for (int i = 0; i < iMAX-1; i++)
 {

 if (iNumbers[i] > iNumbers[i+1])
 {
 bValid = false;
 }
 }

Discussion This seeks a relational response in the sense that the
student needs to recognise what is being performed as a whole
(relational response) rather than describing the actions of the
individual statements (multistructural response); see [40,70,72].

4.1.4.3 Example 6
Performance at the extended abstract level requires students to
generalise their knowledge. An example of testing for this could
be as follows: the students have been taught how to use an
ArrayList. They are now asked to implement code using the Java
library LinkedList class. This expects them to generalise the
knowledge of working with one collection type and apply it in a
near context.

4.1.5 Assessment in the Affective Domain
The learning outcome “Recognise and be guided by social,
professional and ethical issues and guidelines” represents an
area of learning in which instructors want students to take what
they have learnt to heart, not simply to be able to play back what
has been told to them. To provide constructive alignment
between learning outcome and assessment, it is necessary to
assess in the affective domain. The problem is that there is no

time for this learning to be embedded, so it is not very feasible
to assess it during this module. The answer may be to move the
assessment of the affective dimension to a later course.

4.2 Databases Example

4.2.1 Description of course
This course is an introduction to the principles, use, and
applications of database systems. It assumes no previous
knowledge of databases or database technologies. Topics
include: an introduction to relational database systems,
relational database model, entity-relationship model, relational
algebra, SQL, relational design, and advanced topics such as
relational query evaluation, XML databases, and fundamentals
of transactions and concurrency.

4.2.2 Learning Outcomes
This course contributes to the development of the following
capabilities:

• Enabling Knowledge: Fundamental database concepts
including analyzing, designing, defining, constructing and
manipulating relational database systems.

• Problem Solving: Ability to design and implement
database solutions for various application areas and to
build queries for users’ needs, based on analysis of data
modeling problem specifications.

• Critical Analysis: Ability to analyze data modeling
problem specifications and derive alternative conceptual
models that represent the problem in different perspectives
leading to alternative database designs.

Figure 1. Example 8.

 161

4.2.3 Assessment using Bloom’s taxonomy in the

cognitive domain

4.2.3.1 Example 7
The INSERT statement provides an optional clause to list
the columns that you are inserting values into. Why is it
prudent to list the columns when you are developing code
for a production system?

Discussion This invites students to describe the syntax of an
INSERT statement and infer what can go wrong. This is the
Comprehension level of Bloom’s cognitive taxonomy. However,
students who do not know the syntax but have learnt by trial and
error that not listing the columns can produce unexpected results
may answer at the lower level of Remember.

4.2.3.2 Example 8
See Figure 1.

Discussion Most database courses drill students on this kind of
problem, so the question requires Application of known rules.
Note that no explanation is required. Many instructors would
consider that this would make the question more difficult, even
though Comprehension, and Explaining in Anderson et al’s
revision of Bloom’s taxonomy, comes at a lower level than
Application.

4.2.3.3 Example 9
A database contains the following tables:

MOVIE(movieID, title, yearReleased, genre,
ratingCode, nationality)

RATING(ratingCode, ratingDescription)

PERSON(name, DoB)

MOVIE_PERSON(movieID, name, role)

where role can take the values “Director”, “Producer”, etc.

Write a query to return the title, rating, and year released
of all movies released from 1970 – 1995 inclusive that
were directed by Quentin Tarantino, Ron Howard, or Brian
DePalma. Movies should be listed from most to least
recent with titles listed alphabetically for each year.

Discussion This type of question typically presents a new
scenario to the students, so they are expected to operate at the
Analysis level to solve it.

4.2.3.4 Example 10
Roger Ebert, a well-known movie critic, wants to compare
directors across ratings and genres to see if there are any
trends (e.g., do certain directors typically choose movies
from a particular genre with particular ratings?). Using the
tables in example 10 above, write a query to help Roger
analyze the directors who have released one or more
movies since 1960. Specifically, list each director along
with the genre, rating description, and the number of
movies the director has directed in the given genre with
the given rating. However, keep the amount of data
manageable by only including rows with more than 10
movies. List your results from highest to lowest number of
movies. If multiple rows have the same number of movies
then list the director, genre, and rating description
alphabetically.

Discussion This is a more complex example of analysis. It falls
short of Synthesis, or Creating in the revised Bloom’s
taxonomy, because the problem is very self contained and there
is effectively a single right answer. If the student had to find out
about the world of movies as well as about databases, it would
required synthesis.

4.2.3.5 Example 11
For each schedule below, tell whether it is conflict-
serializable. If yes, also tell:

• Whether it is recoverable;
• Whether it avoids cascading rollbacks;
• Whether it is possible under strict 2PL.

(a) T1.write(B), T2.read(A), T2.write(A), T1.read(A),
T1.write(A), T1.commit, T2.commit

(b) T1.write(B), T2.read(A), T2.write(A), T1.read(A),
T1.write(A), T2.commit, T1.commit

(c) T1.write(B), T2.read(A), T2.write(A), T2.commit,
T1.read(A), T1.write(A), T1.commit

(d) T1.write(B), T2.read(A), T1.read(A), T2.write(A),
T1.write(A), T2.commit, T1.commit

(e) T2.write(B), T2.read(A), T2.write(A), T1.write(B),
T2.commit, T1.read(A), T1.commit

Discussion This also requires analysis but falls short of
evaluation.

4.2.4 Assessment using SOLO
Example 7 above seeks a unistructural response because it deals
with a single construct. Example 8 is multistructural because
knowledge of both Insert and Delete constructs is required but
they are used independently. Examples 9 and 10 target a
relational response because the student has to understand how
SQL syntax can be applied to her or his analysis of the problem.
Example 11 is also seeking a relational response.

4.3 Computing Professionalism Examples
Professionalism within computing is a topic of concern to many
professional organizations (IEEE/ACM, BCS etc). These
organizations have sought to make professionalism an explicit
learning objective (instructional modules) at the university-level.
Within computing, this often involves some form of work-based
learning. The question of concern is how to assess
professionalism? Instructors have often relied on written reports
to assess the student’s ability to apply professional concepts.
Additionally, many instructors have attempted to assess
professionalism through the use of peer, employee and self
evaluations.

4.3.1 Description of course
A course in computing professionalism covering topics
concerning the social impact, implications and effects of
computers on society, and the responsibilities of computer
professionals in directing the emerging technology. Relevant
professional skills are explored via active-learning activities
such as business writing, oral presentations, debates, job hunting
and interviewing, professional etiquette, critical thinking, and
peer reviewing. An extension to this course gives students the
opportunity to apply their skills in consulting capacity, working
with real clients to solve their problems.

4.3.2 Learning Outcomes
Students completing this course should be able to...

 162

• review and analyze the effects—both anticipated and
observed—of the insertion of computer technology into
many aspects of society;

• combine their understanding of technology's effects with
their personal values, to express and carry out ethical
behavior with respect to computing and its impacts,
including an ability to articulate and weigh the pros and
cons associated with diverse ethical positions;

• identify, analyze, and act upon work situations that have
potential ethical, legal, or other professional implications;

• produce written documents of varying type and size in a
competent and professional fashion, including the ability
to review and critique colleagues' work;

• design and deliver an interesting, concise, and relevant
oral presentation with technical content.

Students completing the extended course will

• Be able to apply the concepts and techniques required to
build software systems to meet the needs of small
enterprises

• Have developed their own computing professional identity
through applying the ACM/IEEE code of ethics

• Interact “professionally” with a client through meetings,
written reports and email.

4.3.3 Assessment using Bloom’s taxonomy in the

cognitive domain

4.3.3.1 Example 12 A review of a technical article
Following reviewing and editing guidelines, students are
asked to analyze and critique an assigned article,
including providing an answer to questions dealing with
the organization and writing style of the article.

Discussion This requires students to Evaluate in the cognitive
domain. There is also an element of Synthesis (Creating in the
revised taxonomy), particularly if the students are expected to
extend the review to their own discussion of the topic of the
article.

4.3.3.2 Example 13 Group Debates
The debates are intended to sharpen the student’s skills
to adopt and support one or more viewpoints on an issue
about ethics or professionalism in the workplace. The
class is broken down into groups of 4-5 students. Each
team will choose an ethics topic and write a scenario that
raises issues associated with this topic. Teams are
instructed to choose topics that have believable
arguments both pro and con.

General topics to consider include Special needs, ADA
requirements, Universal accessibility, Consideration of
public risks in system development, Internet censorship,
Competitive intelligence or industrial espionage,
Intellectual rights, copyrights, & patents, Privacy, National
missile defense system, Protection of the environment or
ecology, Ethics of medicine or biotechnology, Scientific
fraud or plagiarism, Hackers, Professional and legal
liability for defective information or software, Viruses,
worms, and other "malware", Technological obsolescence

(losing jobs to automation), Cryptography and public
encryption, Whistle-blowing.

Discussion This allows students to demonstrate skills of
analysis, synthesis and evaluation. Note that because they are
asked to take a stance for the sake of debate, they cannot be
assessed in the affective domain.

4.3.3.3 Example 15
Proposal to a hypothetical work group about a

professional issue: This assignment takes place in four
phases. The first deliverable is a two-page (500 words)
plan for how the student is approaching the proposal-
writing process. The second will be a first draft of an 8-
page proposal (approximately 2000 words) researched
and written according to the earlier plan. The third
deliverable is review of another student’s proposal. The
fourth deliverable is a final draft of the proposal, in which
the student makes revisions and responds explicitly to the
review feedback.

Discussion This gives students excellent opportunities to
demonstrate synthesis and evaluation.

4.3.4 Assessment using the SOLO taxonomy
If the SOLO taxonomy is used in assessing professionalism then
for a unistructural assessment, a single professionalism attribute
would be assessed. A multiustructural assessment would seek to
assess to professionalism attributes in a way that was
independent of each other. A relational assessment would focus
on how the professionalism attributes are integrated together in
the assessment exercise. An extended abstract assessment would
seek to observe professional attributes that are being interpreted
in new ways.

In utilizing the SOLO taxonomy, it is not simply the
professionalism attributes that can be assessed. In assessing at
the relational or extended abstract level, it is possible to assess
how professionalism interacts with or relates to other more
technical attributes.

4.3.5 Assessment in the Affective Domain
The learning outcomes of the extended course described above
are concerned with the development of professional attitudes
and values as well as with cognitive skills. These can be
measured using a variety of instruments. One is a reflective log,
in which students are asked to report their feelings and motives
and to evaluate their own performance in the consultancy role.
Another instrument is the instructor’s observation: was the
student proactive in working professionally or was nagging
required to ensure that tasks were completed punctually and to a
high standard? Finally, feedback from the clients has an
important role in determining whether the student’s professional
values and commitment are demonstrated under all
circumstances.

5. WHAT IS SPECIFIC ABOUT

COMPUTER SCIENCE
The learning taxonomies discussed in sections 2 and 3 are
generic, implying that the types of learning and the ordering of
the hierarchy are constant across subjects. However, this may
not be the case. For example, in applied subjects such as
computing, a principal learning objective is the ability to

 163

develop artifacts (in computing, pieces of software) [30]; by
contrast, instructors in other subjects (such as English
Literature) place more emphasis on skills of critique and less on
producing artifacts (such as novels). It could therefore be argued
that in applied subjects, Application encompasses Synthesis and
Evaluation, rather than being a lower level skill. It is notable
that the recent ACM overview of computing curricula [28]
refers to performance competencies rather than learning

outcomes, reinforcing the perceived importance of Application.

We can also distinguish between disciplines in which there is an
emphasis on learning through interpreting and those in which
learning is predominantly achieved through doing. Economics
and Theology could be seen as examples of the former, Dance
and Music performance of the latter. This is not to suggest that
Economics and Theology do not require their students to do in
the sense of repeatedly writing essays; however they are learning
about the practice of the subject rather than running an economy
or developing a new religion. Computing students are expected
to do a lot of learning through doing, whether it is learning
about software engineering by developing systems of increasing
complexity, learning about networking by implementing
protocols or learning about group dynamics by working in
teams.

There are several other characteristics that apply specifically to
computer science as discipline. First, and perhaps foremost,
studying processes and problem solutions is very central to, if
not the essence of, computer science. One could say that solving
problems and producing an effective and efficient solution is the
core goal of a computer science professional. Computer science
centrally involves modeling the real world, representing
domains of the most varied nature and complexity, representing
knowledge in general and dealing with processes and solutions
for problems in such domains.

In order to address the complexities of the problems and
domains, there is an essential need to abstract and decompose
problems into subproblems and modules. Abstraction,
modularity and reusage of previous solutions constitute essential
abilities needed by any computer science researcher or
professional.

Other characteristics of computer science are creativity and
openness to novelty, considering that they are inherently related
to finding solutions to problems. It is also worthy of notice that
computer science is becoming more and more multidisciplinary,
and hence professionals and academics need good
communication skills not only among themselves but also with
experts in other disciplines.

The following list of keywords encompasses what this working
group considers to be intrinsic characteristics of computer
science. Clearly, a comprehensive learning taxonomy should be
useable for assessment of all of them.

Intrinsic characteristics of computer science:

 Problem solving

 Domain modelling

 Knowledge representation

 Efficiency in problem solving

 Abstraction/modularity

 Novelty/creativity

 Categorization

 Communication skills with experts in other domains

 Adoption of good practice in software engineering

This final feature of computing reflects the need to develop
professional skills and values. It is not enough that students
should know what constitutes good programming style; we want
them to have taken this to heart so that they instinctively write
elegant code whenever they work on a piece of software, not just
when marks are explicitly available for doing so. Similarly, any
intended learning outcome relating to the ACM/IEEE or other

 professional code of conduct ought to go beyond “Knows about
the code of conduct”. We want students to respond positively to
it by internalizing it and making it part of their personal set of
moral and ethical principles, so that they automatically behave
according to its precepts, even under challenging circumstances

6. A NEW TAXONOMY FOR

COMPUTER SCIENCE

In this section we present a new taxonomy designed to be
suitable for computer science and engineering, especially for
learning programming (in the broadest meaning of the word).
We also present a novel way to apply any existing taxonomy
which better deals with modularity and increasing levels of
abstraction, aspects that typify engineering and computer
science in particular.

6.1 Two Dimensional Adaptation of Bloom’s

Taxonomy – The Matrix Taxonomy
The intent of the proposed taxonomy is to provide a more
practicable framework for assessing learner capabilities in
computer science and engineering. The immediate target for this
work is computer programming, but we feel the taxonomy is
applicable to other fields of engineering in which practitioners
produce complex systems. It is meant as a partial solution since
(among other things) it does not address the affective domain,
only indirectly deals with abstraction skills, and incompletely
handles structural relationships in the content.

The inspiration for this taxonomy was research [41,73]
indicating that comprehension of program code and the ability to
produce program code are two semi-independent capabilities.
Students who can read programs may not necessarily be able to
write programs of their own. And the ability to write program
code does not imply the ability to debug it. Robins et al. [63]
describe this independent interpretive skill as the ability to
distinguish the intended behavior of the program from the actual
behavior of the program.

 164

Although a review of the literature reveals a wide range of
possible candidates, only Bloom’s taxonomy of the cognitive
domain appears to be widely used in computer science course
and assessment design. Its main strengths are that the levels are
reasonably easy to understand and there is a developing
literature, reviewed above, on how to use it to devise test items.
Thus we felt it would form the most natural basis for our
proposed taxonomy.

We used the revised version of Bloom’s taxonomy [6] which
responded to problems with the linear approach at the higher
levels. It provides a level of creation (Higher Application) which
requires competency at all the previous levels and one that does
not (Create). In order to visualize this distinction and the semi-
independent skills of reading and writing program code, our
taxonomy employs a two dimensional matrix with an adaptation
of Bloom’s taxonomy which is presented in Figure 2.

Figure 2. A graphical presentation of the two dimensional

adaptation of Bloom’s taxonomy.

The dimensions of the matrix represent the two separate ranges
of competencies: the ability to understand and interpret an
existing product (i.e. program code), and the ability to design
and build a new product. Levels related to interpretation are
placed on the horizontal axis and levels related to generation are
placed on the vertical axis, with the lowest levels at the lower
left corner. The names of the levels are from the revised version
of Bloom’s, as we feel they are sufficiently unambiguous. It is
understood that students traverse each axis in strict sequence.
For example, it is not possible to begin to do synthesis (Create)
until there is some degree of competency through the Apply
Level.

6.1.1 Applying the taxonomy – traversing the

matrix
The matrix should be especially useful for instructors needing a
marking grid for their students. Also it rather clearly illustrates
all the different learning paths students may take, as discovered
in recent work by Lahtinen [37].

Different students take different "learning paths" in the matrix
taxonomy. For instance, when a student learns a new
programming concept he first achieves the knowledge of this
concept. At that point the student is in the cell (the state of)
"none/Remember" shown in Figure 2. If this student continues
with learning by imitating a ready example of a program but
without deep understanding of the concept, they will achieve

the state "Apply/Remember", i.e. applying/trying to apply the
concept without real understanding, with trial and error. This
behaviour is illustrated in Figure 3. If instead of imitating, the
student decides to first find more information on this concept, as
from a book, they might proceed to the cell "none/Understand"
to the right of the initial cell. This means that the student is not
yet able to produce program code, but he might already
understand the meaning behind this concept.

A competent practitioner of a concept would be placed in the
cell "Create/Evaluate", which means that he is able to perform at
all the competency levels in the matrix. This can also be
identified as the level Higher Application [27] and can be
reached through different paths as shown in Figure 6.

However, there are students who attain only some of the
competencies. For instance, the theoretical students identified in
a cluster analysis study [37] may be placed in the cell
"none/Evaluate" which means that they are able to read program
code, analyze, and even evaluate it, but cannot yet design a
solution or produce program code. This is not the most common
pathway for students to follow, but these students have only
proceeded in the horizontal direction as shown in Figure 4.

The same study revealed another group, called the practical

students, who could be placed in the cell "Create/Understand" of
the matrix. Being in that cell would indicate the ability to apply
and synthesize without the ability to analyse or evaluate even
their own program code. This behaviour is illustrated in Figure
5. The problem for these practical students is in not being able
to debug their own solutions when they encounter errors.

Figure 3. A student trapped in trial and error approach

 165

Figure 4. The pathway of the students who attain only
theoretical competencies.

Figure 5. The pathway of the students who attain only practical
competencies.

Figure 6. The goal, “Create/Evaluate” or Higher Application,
can be reached through different pathways.

Mapping Programming Activities to the Matrix

We provide a mapping from a set of computer programming
activities to the cells of the matrix in order to illustrate the
discriminatory power of the proposed taxonomy for this subject
area. This is done with a list of problem-solving activities
related to programming collected as a reaction to difficulties
encountered in using Bloom’s Taxonomy. The activities shown
in Table 1 are mapped to the cells of the taxonomy. See Figure
7.

Table 1 – A list of problem-solving activities related to
programming

Solution

Activity

Description

Adapt modify a solution for other domains/ranges

Analyse probe the [time] complexity of a solution

Apply use a solution as a component in a larger
problem

Debug both detect and correct flaws in a design

Design devise a solution structure

Implement put into lowest level, as in coding a
solution, given a completed design

Model illustrate or create an abstraction of a
solution

Present explain a solution to others

Recognize base knowledge, vocabulary of the domain

Refactor redesign a solution (as for optimization)

Relate understand a solution in context of others

Trace desk-check a solution

To “adapt” a solution probably requires competency close to
Create on the vertical scale and at least Understand on the
horizontal scale, because modifying involves production and
knowing what and how to modify requires understanding.
“Apply” in the meaning of Table 1 may be as high as Create on
the vertical axis since it calls for some creative ability, probably
more than implied by the Apply level, in spite of its name. The
position in the horizontal axis depends on the situation. To
“debug” calls for a collaboration of both interpretation and
building so should be high on both axes, perhaps in the cell
“Create/Analyse”. The ability to “design” naturally implies
Create on the vertical scale and likely some degree of
interpretation on the horizontal scale, though how much is
uncertain.

“Refactor” and “Relate” are shown at the highest level of
interpretation because both call for a deep understanding of the
context of the problem and solution. We view “refactoring” as
involving an improvement on the original design, thus admitting
a possible placement even higher than “design”.

To avoid belaboring the mapping example, we simply state that
similar reasoning inspired the placement of the remaining
activities. The point is that a mapping is feasible and does result
in a fairly complete covering of the grid. Furthermore, most of
these activities are general enough to be immediately applicable
to other fields of engineering.

 166

Several of the solution activities may be amenable to assessment
using the SOLO taxonomy, which considers the organizational
complexity of the problem. This dimension is not at present
well illustrated by our matrix, though it may be expected that
SOLO levels generally increase as one goes from the origin to
the upper right. Consider the activity “present”: One would
prefer the ability of presentation at the relational level of SOLO
as opposed to uni- or multi-structural. “Design”, “relate”, and
“model” are other activities we have identified for which SOLO
is useful. In contrast, “implement” as defined in the table,
involves applying a process to an otherwise completed design,
and thus may be less related to skills involving complexity.

Many of the activities are related to the ability to work with
abstraction, an ability that is vital for computer programming
and has been discussed as an overriding argument for an
alternative learning taxonomy [33]. Design, model, refactor,
debug, and present may easily be seen to involve extensive
consideration of abstractions. As examples, these activities may
include as sub-activities the following: traversing levels of
abstraction, mapping between levels (precision being essential
for programming!), constructing new abstractions (with the
attendant requirements of retaining needed detail and
eliminating unneeded detail), adapting abstractions, and using
abstractions as models of the original problem and/or solution.

A subject of some discussion in this working group was how to
apply the matrix taxonomy to the affective domain. We have
designed this taxonomy only for the cognitive domain but non-
cognitive skills (e.g. social and emotional skills and the adoption
of professional standards) also play a major part in programming
practice. Internalization of professional practices is indeed an
essential component of learning for computer programmers.
Possibilities considered included extending the matrix in one or
both directions by another level, or devising a companion
matrix. Our overall feeling was that there is so little experience
in computer science of assessment of values and attitudes that
this would be premature. Krathwohl, Bloom and Masia’s
taxonomy for the affective domain [32] appears to be usable for
courses aiming to develop professional values and we would

like to encourage its adoption so that an evidence base can be
accumulated.

6.2 Applying Taxonomies Iteratively - a

Spiral Architecture for Applying a Learning

Taxonomy
Robins at al. describe a schema as “a structured chunk of related
knowledge” [63]. The student's learning goes through learning
new schemas, modifying and combining them in order to
produce new, more abstract schemas. Thus, the learning of
programming could be seen as an iterative process. In the very
beginning, the student is taught really simplistic and basic pieces
of information and places to apply them. Instead of learning
some things here and there, programming is a skill that is
learned by building new information on top of earlier
information. So in a way the basic pieces of information
students are first struggling with become the bits and pieces they
use in subsequent learning of new material. Compared to other
cyclic learning styles e.g. the experimental learning style
described by Kolb’s Learning Cycle [30], the idea here is to
proceed to a new level after each cycle.

The idea of a cognitive learning taxonomy can also be used in an
iterative, spiral way. When the student is learning the basic
concepts and the simplest subjects, he is going through the
taxonomy in respect of that subject only. After having created a
schema on that subject, he is then guided into a more abstract
subject. When looking only at this new subject, the student is
starting again from the lowest level of taxonomy—but now
using the earlier material as a prerequisite.

The spiral process could be applied to Bloom's taxonomy, in
that when the student is learning a new subject, his
prerequisites—the materials to use in building new
knowledge—have become his new basic knowledge, although
the student has perhaps reached the level Create or Evaluate on
those earlier subjects. Create could be described as the ability to
combine one subject with others in order to build new solutions.
This may also be seen when new solutions or subjects are learnt
by building upon and integrating previous knowledge. This is
easily seen to be true when considering that topics that are
difficult and require in-depth analyzing by students are mere
basic knowledge for expert programmers. Applying Bloom’s
taxonomy iteratively is illustrated in Figure 8.

Here is an example of a learning spiral: In the beginning a
programming student is taught how to use a loop structure. He
will go through all the levels of Bloom's taxonomy while
learning it. He knows that a loop can be used for iteration; he
understands how the loop works; he is able to apply a loop
when told etc., eventually learning it thoroughly. After reaching
the highest levels, the loop structure has become a tool for the
student to use in subsequent programming. As the student is
trying to learn how to sort an array, the loop can be seen as his
basis knowledge upon which he is building his new knowledge.
Later as the student is trying to implement a top-application1 to

1 The application that displays and updates sorted information

about the top CPU processes

Figure 7. Mapping programming activities to the Matrix

 167

his own operating system, he will use the sorting of an array as a
part of his base knowledge.

Traditionally programming has been taught starting with low
levels of abstraction, moving on bit-by-bit to higher
abstractions. For example, consider learning expressions, loop
structures, functions, classes, design patterns etc. There are still
many situations where one returns for more in-depth learning.
Using a high level programming language itself establishes a
starting level of abstraction, and using the objects-first approach
immediately raises that level. The spiral approach with learning
taxonomies must not be seen as going directly from bottom to
top, but by seeing each round as thoroughly learning some new
piece of information which is then used as a basis for the next
round in the topic. It is of benefit to know how to write
functions using C++ when one is trying to do something similar
but more challenging with a lower level language such as
Assembly, because then one already has knowledge of
procedures, functions, parameters and return values.

The spiral application of a taxonomy is not limited to any
particular taxonomy such as Bloom's. One round of the spiral
(the learning of a new schema) could be described by any
taxonomy suitable for describing students’ abilities in that
subject. For instance, the Matrix taxonomy proposed in
subsection 1 could be applied in a spiral way. One learning path
from the elementary level “none/Remember” to the Higher
Application level “Create/Evaluate” can be seen as one round of
the spiral. When rising to a higher abstraction level, the student
starts his “ learning path” once again from the lower left corner.

When trying to move up a level of abstraction (as in to start a
new round of the spiral) the student may not have reached the
Higher Application level “Create/Evaluate”. To use his skills as
a basic knowledge for the next, more abstract round the student
may well be in one of the nearby cells, such as
“Create/Analyse”. While already progressing in the next round
(with a more abstract subject), the student may eventually reach
the “Create/Evaluate” state of the earlier level through his
experience in using it. Thus the two rounds would in a way be
followed in parallel for a while. On the other hand, if the student
has taken one of the less desirable learning paths illustrated in
Figures 3 and 4 (theoretical or practical only) and attempts to
progress to the next round, he could be building his knowledge
on misconceptions and may later face problems.

7. CONCLUSIONS AND

RECOMMENDATIONS
Despite the wide range of taxonomies presented in this paper the
Bloom’s taxonomy of the cognitive domain seems to dominate
the field of computer science course and assessment design.
Though having many benefits, its principal weakness is that the
levels do not appear to be well ordered when used to assess
practical subjects such as programming. Our recommended
solution is to separate Bloom’s six levels into two dimensions,
Producing (incorporating apply and create) and Interpreting
(incorporating remember, understand, analyze and evaluate).
This removes the strict ordering while retaining many of the
concepts of Bloom’s taxonomy. This generates a matrix that can
be used to identify a range of different learning trajectories and
hence to guide students in how to improve their skills and
understanding.

Discussions with colleagues also exposed a lack of alignment
between learning outcomes and assessment practice in the area
of professionalism. Instructors bemoan students’ lack of
commitment to good engineering principles but fail to assess
this, sending mixed messages to learners. This can be addressed
by assessment in the affective as well as the cognitive domain.
There no evidence in the literature of this being done, so the
most sensible course would be to use an existing taxonomy for
this purpose.

We recommend the use of our matrix taxonomy for the design
and assessment of programming and software engineering
courses. We also recommend that instructors and course
designers use Bloom’s taxonomy of the affective domain to
achieve constructive alignment between their desire to produce
computer scientists with professional attitudes and values and
the messages they send through assessment tasks. Further work
is needed to evaluate both these methodologies in computer
science education.

Figure 8. Bloom’s Taxonomy as a Spiral Taxonomy.

8. REFERENCES
[1] Agencia Nacional de Evaluación de la Calidad y

Acreditación. 2005. Título de Grado en Ingeniería
Informática.

[2] Ala-Mutka, K.M. A survey of automated assessment
approaches for programming assignments. Computer

Science Education 15, 83-102, 2005.

[3] Anderson, L.W., Krathwohl, D.R., Airasian, P.W.,
Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths, J.
and Wittrock, M.C., Eds. 2001. A taxonomy for learning

and teaching and assessing: A revision of Bloom's

taxonomy of educational objectives. Addison Wesley
Longman, Inc.

[4] Azuma, M., Coallier, F. and Garbajosa, J. How to apply the
Bloom taxonomy to software engineering. Software

Technology and Engineering Practice: Eleventh Annual

International Workshop on, 19-21 Sept. 2003, 117-122.

[5] Biggs, J.B. and Collis, K.F. 1982. Evaluating the quality of

learning: The SOLO taxonomy (Structure of the Observed

Learning Outcome). Academic Press, New York.

 168

[6] Biggs, J.B. Teaching for quality learning at university.

Open University Press, Buckingham, 1999.

[7] Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H. and
Krathwohl, D.R. 1956. Taxonomy of Educational

Objectives: Handbook 1 Cognitive Domain. Longmans,
Green and Co Ltd, London.

[8] Bologna Secretariat. Framework of qualifications for the
European Higher Education Area, 2005.

[9] Box, I. Assessing the assessment: an empirical study of an
information systems development subject. Proceedings of

the fifth Australasian conference on Computing education -

Volume 20, Adelaide, Australia, Australian Computer
Society, Inc., 2003.

[10] Buck, D. and Stucki, D. J. Design Early Considered
Harmful: Graduated Exposure to Complexity and Structure
Based on Levels of Cognitive Development. 31st SIGCSE

Technical Symposium on Computer Science Education,

2000, 75-79.

[11] Buck, D. and Stucki, D.J. JKarelRobot: A case study in
supporting levels of cognitive development in the computer
science curriculum. Proceedings of the 32nd SIGCSE

Symposium on Computer Science Education, ACM Press,
New York, NY, 2001, 16-20.

[12] Buckley, J. and Exton, C. A framework for assessing
programmers' knowledge of software systems. Proc. 11th

IEEE International Workshop on Program

Comprehension, IWPC, 2003.

[13] Burgess, G.A. Introduction to programming: blooming in
America. J. Comput. Small Coll. 21, 19-28. 2005.

[14] Computing Accreditation Commission. Criteria for

Accrediting Computing Programs: Effective for

Evaluations During the 2006-2007 Accreditation Cycle.

ABET Inc, Baltimore, MD, 2005.

[15] Cooper, S., Cassel, L., Moskal, B., and Cunningham, S.
Outcomes-based computer science education Proceedings

of the 36th SIGCSE technical symposium on Computer

science education, ACM Press, St. Louis, Missouri, USA,
2005.

[16] Cukierman, D. and McGee Thompson, D. Learning
Strategies Sessions within the Classroom in Computing
Science University CoursesProceedings of WCCCE 2007,

12th Western Canadian Conference on Computing

Education, May 2007.

[17] Doran, Michael V. and Langan, David D. A cognitive-
based approach to introductory computer science courses:
lesson learned. Proceedings of the twenty-sixth SIGCSE

technical symposium on Computer science education,

Nashville, Tennessee, United States, ACM Press, 1995.

[18] Facione, P. A. Critical thinking; A statement of expert
consensus for purposes of educational assessment and
instruction, research findings and recommendations, 1990,

Fullerton ERIC Reports, ED315.423.

[19] Farthing, D. W., Jones, D. M. and McPhee, D.
Permutational multiple-choice questions: an objective and
efficient alternative to essay-type examination questions.
Proceedings of the 3

rd
 Conference on Innovation and

Technology for Computer Science Education, ITiCSE,

1998, ACM Press, New York, NY, 1998, 81-85.

[20] Gronlund, N.F. Measurement and evaluation in teaching.

MacMillan, New York, 1981.

[21] Hernán-Losada, I., Lázaro-Carrascosa, C. and Velázquez-
Iturbide, J. Á. On the use of Bloom’s taxonomy as a basis
to design educational software on programming.
Proceedings of World Conference on Engineering and

Technology Education, WCETE 2004, COPEC, Brazil,
2004, 351-355.

[22] Hernán-Losada, I., Velázquez-Iturbide, J. Á and y Lázaro-
Carrascosa, C. A. Programming learning tools based on
Bloom's taxonomy: proposal and accomplishments. Proc.

VIII International Symposium of Computers in Education

(SIIE 2006), León, España, Octubre 2006, 2006, 325-334.

[23] Howard, Richard A., Carver, Curtis A. and Lane, William
D. Felder's learning styles, Bloom's taxonomy, and the
Kolb learning cycle: tying it all together in the CS2 course.
Proceedings of the twenty-seventh SIGCSE technical

symposium on Computer science education, Philadelphia,
Pennsylvania, United States, ACM Press, 1996.

[24] Huitt, W. and Hummel, J. 2003. Piaget’s theory of
cognitive development. Educational Psychology

Interactive

[25] Ihantola, P., Karavirta, V., Korhonen, A. and Nikander, J.
Taxonomy of effortless creation of algorithm visualizations.
Proceedings of the 2005 International Workshop on

Computing Education Research, ICER '05, Seattle, WA,
October 01-02, 2005, ACM Press, New York, NY, 2005,
123-133.

[26] Illinois Online Network: Educational Resources,
http://www.ion.illinois.edu/resources/tutorials/assessment/b
loomtest.asp, Accessed on 19/07/2007, 2007.

[27] Johnson, C. G. and Fuller, U. D. Is Bloom's taxonomy
appropriate for computer science? 6th Baltic Sea

Conference on Computing Education Koli Calling 2006,

Koli Calling, November 2006, Berglund, A. and Wiggberg,
M., Eds. Department of Information Technology,
University of Uppsala, Stockholm, 2007, 120-123.

[28] Joint IEEE Computer Society/ACM Task Force on
Computing Curricula. 2005. The Overview Report.
http://www.computer.org/portal/cms_docs_ieeecs/ieeecs/ed
ucation/cc2001/CC2005-March06Final.pdf, 2005, visited
September 2007.

[29] King, O.M. and Kitchener, K.S. 1994. Developing

reflective judgement: understanding and promoting

intellectual growth and critical thinking in adolescents and

adults. Jossy-Bass Inc, San Francisco.

[30] Kolb, D. Experiential Learning: Experience as the Source

of Learning and Development. Prentice-Hall, New York,
NY, 1984.

[31] Kramer, J. Is abstraction the key to computing?
Communications of the ACM 50, 37-42, 2007.

[32] Krathwohl, D.R., Bloom, B.S. and Masia, B.B. 1964.
Taxonomy of educational objectives: the classification of

 169

educational goals. Handbook Volume 2: Affective domain.

McKay, New York.

[33] Krathwohl, D.R. A revision of Bloom's taxonomy: an
overview. Theory into Practice 41, 212-218, 2002.

[34] Kumar, A.N. Learning programming by solving problems.
In Informatics Curricula and Teaching Methods, L. Cassel
and R.A. REIS, Eds. Kluwer Academic, 29-39, 2003.

[35] Kundratova, M., Turek, I. Chapters from engineering

pedagogy. Educational Objectives (in Slovak). STU
Bratislava, 2001.

[36] Lahtinen, E. and Ahoniemi, T. Visualizations to Support
Programming on Different Levels of Cognitive
Development. Proceedings of The Fifth Koli Calling

Conference on Computer Science Education, 2005, 87-94.

[37] Lahtinen, E. A Categorization of Novice Programmers: A
Cluster Analysis Study. Proceedings of the 19th annual

Workshop of the Psychology of Programming Interest

Group, Joensuu, Finland, July 2-6, 2007, Sajaniemi,J. and
Tukiainen,M., Eds. University of Joensuu Department of
Computer Science and Statistics, Joensuu, Finland, 2007,
32-41.

[38] Lister, R. On Blooming First Year Programming, and its
Blooming Assessment. Proceedings of the Australasian

Conference on Computing EducationACM Press, New
York, NY, 2000, 158-162.

[39] Lister, R., and Leaney, J. Introductory programming,
criterion-referencing, and Bloom. Proceedings of the 34th

SIGCSE technical symposium on Computer science

education, Reno, Nevada, USA, ACM Press, 2003.

[40] Lister, R., and Leaney, J. First year programming: Let all
the flowers bloom. 5th

 Australasian Computer Education

Conference, Adelaide, SA, Australia, 2003.

[41] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J,
Lindholm, M., McCartney, R., Moström, J.E., Sanders, K.,
Seppälä, O., Simon, B., and Thomas, L. A multi-national
study of reading and tracing skills in novice programmers.
Working group reports from ITiCSE on Innovation and

technology in computer science education, Leeds, United
Kingdom, ACM Press, 2004, 119-150.

[42] Lister, R., Simon, B., Thompson, E., and Whalley, J.L. Not
seeing the forest for the trees: novice programmers and the
SOLO taxonomy. Proceedings of the 11th annual SIGCSE

conference on Innovation and technology in computer

science education, Bologna, Italy, ACM Press, New York,
NY, 2006, 118-122.

[43] Machanick, P. Experience of applying Bloom's Taxonomy
in three courses. Proc. Southern African Computer

Lecturers' Association Conference, Strand, South Africa,
June 2000, 2000, 135-144.

[44] Manaris, B. and McCauley, R. Incorporating HCI into the
undergraduate curriculum: Bloom's taxonomy meets the
CC'01 curricular guidelines. Frontiers in Education, 2004.

FIE 34th Annual Meeting, 2004, T2H/10-T2H/15.

[45] Merrill, M.D. Lesson segments based on component
display theory. In Instructional design theory, M.D.

Merrill, Ed. Educational Technology Publications,
Englewood Cliffs, NJ, 177-212, 1994.

[46] Merrill, M.D. The prescriptive component display theory.
In Instructional design theory, M.D. Merrill, Ed.
Educational Technology Publications, Englewood Cliffs,
NJ, 159-176, 1994.

[47] Merrill, M.D. The descriptive component display theory. In
Instructional design theory, M.D. Merrill, Ed. Educational
Technology Publications, Englewood Cliffs, NJ, 111-157,
1004

[48] Moon, J. How to use level descriptors. Southern England
Consortium for Credit Accumulation and Transfer, 2002.

[49] Naps, T., Cooper, S., Koldehofe, B., Roessling, G., Dann,
W., Korhonen, A., Malmi, L., Rantakokko, J., Ross, R.J.,
Anderson, J., Fleischer, R., Kuittinen, M. and McNally, M.
2003. Evaluating the educational impact of visualization.
ACM SIGCSE Bulletin 35, 124-136.

[50] Niemierko, B. Pomiar sprawdzajacy w dydaktyce. Teoria i

zastosowania (in Polish).Panstwowe Wydawnictwo
Naukowe, Warszawa, 1990.

[51] Oliver, D., Dobele, T., Greber, M., and Roberts, T. This
course has a Bloom Rating of 3.9. Proceedings of the sixth

conference on Australasian computing education - Volume

30, Dunedin, New Zealand, Australian Computer Society,
Inc., 2004.

[52] Perry, W.G.J. Forms of intellectual and ethical

development in the college years: a scheme. Harcourt
Brace Jovanovich College Publishers, Forth Worth, 1968.

[53] Perry, W.G.J. Different worlds in the same classroom. In
Improving learning: new perspectives, P. Ramsden, Ed.
Kogan Page; Nichols Pub. Co, London, New York NY,
145-161, 1988.

[54] Piaget, J. and Inhelder, B. The Psychology of the Child.

Routledge & Kegan Paul, 1969.

[55] Polanyi, M. 1958. Personal knowledge: towards a post-

critical philosophy. Routledge and Kegan Paul, Chicago.

[56] Rademacher, R. Applying Bloom's taxonomy of cognition
to knowledge management systems. 1999 ACM SIGCPR

conference on Computer Personnel Research, New
Orleans, LA, April 8-10, 1999, ACM Press, New York,
NY, 1999, 276-278.

[57] Rapaport, W.J. William Perry's scheme of intellectual and
ethical development,
http://www.cse.buffalo.edu/~rapaport/perry.positions.html.

[58] Reeves, M.F. An Application of Bloom's Taxonomy to the
Teaching of Business Ethics. Journal of Business Ethics 9,
609-616, 1990.

[59] Reigeluth, C.M. and Stein, F.S. 1983. The elaboration
theory of instruction. In Instructional-design theories and

models: an overview of their current status, C.M.
Reigeluth, Ed. Lawrence Erlbaum Associates, Hillsdale,
NJ, 338-381.

[60] Reigeluth, C.M., Merrill, M.D. and Bunderson, C.V. 1994.
The structure of subject matter content and its instructional
design implications. In Instructional design theory, M.D.

 170

Merrill, Ed. Educational Technology Publications,
Englewood Cliffs, NJ, 59-77.

[61] Reigeluth, C.M., Merrill, M.D., Wilson, B.G. and Spiller,
R.T. 1994. The elaboration theory and instruction: a model
for sequencing and synthesizing instruction. In
Instructional design theory, M.D. Merrill, Ed. Educational
Technology Publications, Englewood Cliffs, NJ, 79-102.

[62] Reynolds, C. and Fox, C. 1996. Requirements for a
computer science curriculum emphasizing information
technology: subject area curriculum issues. ACM SIGCSE

Bulletin 28, 247-251.

[63] Robins, A., Rountree, J. and Rountree, N. 2003. Learning
and Teaching Programming: a Review and Discussion.
Computer Science Education 13, 137-172.

[64] Sanders, I. and Mueller, C. A fundamentals-Based
Curriculum for First Year Computer Science. 31st SIGCSE

Technical Symposium on Computer Science Education,

ACM Press, 2000, 227-231.

[65] Scott, T. Bloom's taxonomy applied to testing in computer
science classes. J. Comput. Small Coll. 19, 267-274, 2003.

[66] Simpson, B.J. The classification of educational objectives:
psychomotor domain. Illinois Journal of Home Economics

10, 110-114, 1966.

[67] Svec, S. Taxonomy for Teaching: A System for Teaching
Objectives, Learning Activities and Assessment Tasks
(Revision of Bloom’s Taxonomy of the Cognitive Domain).
In Pedagogicka revue (in Slovak) 57, 453-476, 2005.

[68] Swedish Ministry of Higher Education and Research,
Higher Education Ordinance,
http://www.sweden.gov.se/sb/d/574/a/21541, Accessed on
19/07/2007, 2007.

[69] Thompson, E. Does the sum of the parts equal the whole?
Proceedings of the seventeenth annual conference of the

National Advisory Committee on Computing

Qualifications, Mann, S. and Clear, T., Eds. National
Advisory Committee on Computing Qualifications, 2004,
440-445.

[70] Thompson, E. Holistic assessment criteria - applying SOLO
to programming projects. Proceedings of the Ninth

Australasian Computing Education Conference (ACE

2007), Ballarat, Victoria, Australia, Mann, S. and Simon,
Eds. Australian Computer Society Inc, 2007, 155-162.

[71] University of Victoria. Learning Skills Program - Bloom's
Taxonomy,
http://www.coun.uvic.ca/learn/program/hndouts/bloom.htm
l, Accessed on 19/07/2007, 2007.

[72] Whalley, J.L., Lister, R., Thompson, E., Clear, T., Robbins,
P., Kumar, P. K.A., and Prasad, C. An Australasian study
of reading and comprehension skills in novice
programmers, using the bloom and SOLO taxonomies.
Proceedings of the 8th Australasian Conference on

Computing Education - Volume 52, Hobart, Australia,
Australian Computer Society, Inc, 2006, 243-252.

[73] Winslow, L.E. 1996. Programming Pedagogy - a
Psychological Overview. SIGCSE Bull. 28, 17-22.

Acknowledgements

This paper is partly supported by the ITiCSE 2007 Student Bursary of

the British Computer Society and the grant of FGU No 21/2007 (Faculty

of Management Science and Informatics, University of Zilina)

