

Materializing Potions
Level 3 – Section 1

Query Operators

More Info

More Info

More Info

Strength: 1Taste: 4
Score: 70
Invisibility

Strength: 5Taste: 3
Score: 84
Love

Strength: 3Taste: 2
Score: 94
Shrinking

Vendor

Strength
+ more

+ more

Kettlecooked

Brewers

5

4

Potion Reviews

X

Adding a Filter for Potions
We’ve received a new feature request to allow users to filter potions based on multiple
criteria.

Only show potions made by Kettlecooked that
have a strength of 5

X

Querying With Multiple Criteria

> db.potions.find(
 {

"vendor": "Kettlecooked",
 "ratings.strength": 5
}

)

We can pass in more
than 1 query

We can query based on multiple criteria by passing in comma-separated queries.

Matches both
documents

Name:
“Love”

Vendor:
“Brewers”

Strength: 2
...

Name:
“Invisibility”

Vendor:
“Kettlecooked”

Strength: 5
 ...

Name:
“Shrinking”

Vendor:
“Kettlecooked”

Strength: 5
...

Name:
“Luck”

Vendor:
“Kettlecooked”

Strength: 4
...

SHELL

More Info

More Info

More Info

Strength: 1Taste: 4
Score: 70
Invisibility

Strength: 5Taste: 3
Score: 84
Love

Strength: 3Taste: 2
Score: 94
Shrinking

Potion Reviews
Ingredients

Vendor
+ more

+ more

Laughter

Unicorn

Kettlecooked

Brewers

Price
Under $10

Under $20X

Finding Potions Based on Conditions
Queries of equality are great, but sometimes we’ll need to query based on conditions.

Search for potions with a
price less than 20

Comparison Query Operators
We can use comparison query operators to match documents based on the comparison of a
specified value.

greater than$gt

$gte

$lt

$lte

$ne

greater than or equal to

less than

less than or equal to

not equal to

Common Comparisons

Finding Potions That Are Less Than $20

> db.potions.find({"price": "$lt": 20}}{

We can match the appropriate documents by using the $lt comparison operator.

Price less than 20

Name:
“Love”

Vendor:
“Brewers”

Price: 3.99
...

Name:
“Invisibility”

Vendor:
“Kettlecooked”

Price: 15.99
...

Name:
“Shrinking”

Vendor:
“Kettlecooked”

Price: 9.99
...

Name:
“Luck”

Vendor:
“Kettlecooked”

Price: 59.99
...

SHELL
)

Finding Potions Between Prices

> db.potions.find({"price": "$gt":10, "$lt": 20}}

We can query with a range by combining comparison operators.

Price greater than 10 and
less than 20

Name:
“Love”

Vendor:
“Brewers”

Price: 3.99
...

Name:
“Invisibility”

Vendor:
“Kettlecooked”

Price: 15.99
...

Name:
“Shrinking”

Vendor:
“Kettlecooked”

Price: 9.99
...

Name:
“Luck”

Vendor:
“Kettlecooked”

Price: 59.99
...

SHELL

{)

Queries of Non-equality

> db.potions.find({"vendor": "$ne": "Brewers"}}

We can use the $ne operator to find potions with fields that don’t equal the specified value.

Vendor not equal to “Brewers”

Name:
“Love”

Vendor:
“Brewers”

Price: 3.99
...

Name:
“Invisibility”

Vendor:
“Kettlecooked”

Price: 15.99
...

Name:
“Shrinking”

Vendor:
“Kettlecooked”

Price: 9.99
...

Name:
“Luck”

Vendor:
“Kettlecooked”

Price: 59.99
...

SHELL
{)

Name:
“Love”

Price: 3.99
Sizes: [2,8,16]
...

Name:
“Luck”

Price: 59.99
Sizes: [10,16,32]
...

Range Queries on an Array

> db.potions.find(
{"sizes" :

Each potion has a size field that contains an array of available sizes. We can use $elemMatch
to make sure at least 1 element matches all criteria.

At least 1 value in an array MUST be
greater than 8 and less than 16

{"$elemMatch": {"$gt": 8, "$lt": 16}}

Name:
“Invisibility”

Price: 15.99
Sizes: [34,64,80]
...

Name:
“Shrinking”

Price: 9.99
Sizes:[32,64,112]
...

The value 10 matches!
Potion sizes

SHELL

}
)

Be Careful When Querying Arrays With Ranges

> db.potions.find(
{"sizes" :
)

{"$gt": 8, "$lt": 16}

What happens when we try to perform a normal range query on an array?

Doesn’t contain any
matching sizes, so why

did it match?

SHELL

}

Name:
“Invisibility”

Price: 15.99
Sizes: [34,64,80]
...

Name:
“Shrinking”

Price: 9.99
Sizes:[32,64,112]
...

Name:
“Luck”

Price: 59.99
Sizes: [10,16,32]
...

Name:
“Love”

Price: 3.99
Sizes: [2,8,16]
...

Be Careful When Querying Arrays With Ranges

> db.potions.find(
{"sizes" :
)

{"$gt": 8, "$lt": 16}

What happens when we try to perform a normal range query on an array?

SHELL

}

Name:
“Love”

Price: 3.99
Sizes: [2,8,16]
...

Why Did the Document Match?
Each value in the array is checked individually. If at least 1 array value is true for each criteria,
the entire document matches.

Name:
“Love”

Price: 3.99
Sizes: [2,8,16]
...

{"sizes": {"$gt": 8, "$lt": 16}}

"sizes": [2, 8, 16]

Range Query

Both criteria are met by at least 1 value

Name:
“Invisibility”

Price: 15.99
Sizes: [32,64,80]
...

Not Matching a Document
Conversely, the document will not match if only 1 criteria is met.

{"sizes": {"$gt": 8, "$lt": 16}}

"sizes": [32, 64, 80]

Range Query

Only 1 criteria is met, so the document
doesn’t match

Materializing Potions
Level 3 – Section 2

Customizing Queries

Listing Our Best Potions
We’re putting together a list of the best potions we’ve used. Let’s find potions with a grade
equal to or greater than 80.

Need the name and vendor of
potions with a high grade

Potions Collection

Best potions

Introducing Projections
find() takes a second parameter called a “projection” that we can use to specify the exact
fields we want back by setting their value to true.

 {"vendor": true, "name": true}

> db.potions.find(
{"grade": {"$gte": 80}},

{
"_id": ObjectId(...),
"vendor": "Kettlecooked",
"name": "Shrinking"

}
...

When selecting fields, all other fields but
the _id are automatically set to false

Only retrieve what ’s needed

SHELL

)

Excluding Fields
Sometimes you want all the fields except for a few. In that case, we can exclude specific fields.

> db.potions.find(
{"grade": {"$gte": 80}},

 {"vendor": false, "price": false}

{/
"_id": ObjectId(...),
"name": "Shrinking",
"grade": 94,
"ingredients": [...],
...

}

When excluding fields, all
fields but those set to false are

defaulted to true

Great for removing
sensitive data

SHELL

)

Excluding the _id
The _id field is always returned whenever selecting or excluding fields. It’s the only field that
can be set to false when selecting other fields.

{"vendor": true, "price": true,

The only time we can mix
an exclusion with selections

"_id": false

Removing the id is common when preparing data reports for non-developers.

}

{
"vendor": "Homebrewed",
"price": 9.99

}

> db.potions.find(
{"grade": {"$gte": 80}},

SHELL

)

Either Select or Exclude Fields
Whenever projecting, we either select or exclude the fields we want — we don’t do both.

"$err": "Can't canonicalize query: BadValue
Projection cannot have a mix of inclusion
and exclusion."

{"name": true, "vendor": false}

Causes an error to be
raised

ERROR

)

SHELL
> db.potions.find(
{"grade": {"$gte": 80}},

More Info

More Info

More Info

Strength: 1Taste: 4
Score: 70
Invisibility

Strength: 5Taste: 3
Score: 84
Love

Strength: 3Taste: 2
Score: 94
Shrinking

Ingredients

Vendor
+ more

+ more

Laughter

Unicorn

Kettlecooked

Brewers

Price
Under $10

Under $20X

Potion Reviews

Counting Our Potions
Time to advertise our expertise and list the total number of potions we’ve reviewed.

Need to count the total number of
potions in the potions collectionOver 10,000 Potion Reviews!

Introducing the Cursor
Whenever we search for documents, an object is returned from the find method called a
“cursor object.”

>

By default, the first 20 documents
are printed out

SHELL

First 20
documents

...

{"_id": ObjectId(...), ... }
{"_id": ObjectId(...), ... }
{"_id": ObjectId(...), ... }

){"vendor": "Kettlecooked"}db.potions.find(

Iterating Through the Cursor
When there are more than 20 documents, the cursor will iterate through them 20 at a time.

type "it" for more

...

db.potions.find(

Sends 20
documents SHELL

)

{"_id": ObjectId(...), "name": ... }
{"_id": ObjectId(...), "name": ... }

{"_id": ObjectId(...), "name": ... }

Continuing to Iterate Through the Cursor
Typing “it” will display the next 20 documents in the cursor.

> it

type "it" for more

We’ll continue being
prompted until no
documents are left

Iterates the cursor
Next batch

sent SHELL

{"_id": ObjectId(...), "name": ... }
{"_id": ObjectId(...), "name": ... }
...

db.potions.find()

Cursor Methods
Since the cursor is actually an object, we can chain methods on it.

> db.potions.find()

Cursor methods always come after find() since it returns the cursor object.

Returns cursor object

Method on cursor that returns the count
of matching documents

SHELL

80
.count()

More Info

More Info

More Info

Strength: 1Taste: 4
Score: 70
Invisibility

Strength: 5Taste: 3
Score: 84
Love

Strength: 3Taste: 2
Score: 94
Shrinking

Ingredients

Vendor
+ more

+ more

Price
+ more

Sort
Price high

Price low

Potion Reviews

Sort by Price
We want to implement a way for users to sort potions by price.

Sort potions with the lowest
price first

X

Sorting Potions
We can use the sort() cursor method to sort documents.

> db.potions.find().sort({"price": 1})

-1 to order descending
1 to order ascending

Field to sort

Name:
“Love”

Vendor:
“Brewers”

Price: 3.99
...

Name:
“Invisibility”

Vendor:
“Kettlecooked”

Price: 15.99
...

Name:
“Shrinking”

Vendor:
“Kettlecooked”

Price: 9.99
...

Name:
“Luck”

Vendor:
“Leprechau…"

Price: 59.99
...

SHELL

More Info

More Info

More Info

Strength: 1Taste: 4
Score: 70
Invisibility

Strength: 5Taste: 3
Score: 84
Love

Strength: 3Taste: 2
Score: 94
Shrinking

Ingredients

Vendor
+ more

+ more

Price
+ more

Sort
Price high

Price low

Potion Reviews

Paginating the Potions Page
We only want to show 3 potions per page. Time to implement pagination!

Paginate results so we only see 3
potions on each page

< Back Next >

Basic Pagination
We can implement basic pagination by limiting and skipping over documents. To do this, we’ll
use the skip() and limit() cursor methods.

Page 1

Skip 0, Limit 3

> db.potions.find().

Since we’re not skipping, we
can leave off the skip method

and just limit 3

SHELL
limit(3)

Basic Pagination
We can implement basic pagination by limiting and skipping over documents.

Page 2

Skip 3, Limit 3

> db.potions.find().
SHELL

limit(3)skip(3).

Basic Pagination
We can implement basic pagination by limiting and skipping over documents.

Page 3

Skip 6, Limit 3

This approach can become really expensive
with large collections.

> db.potions.find().
SHELL

skip(6).limit(3)

