

First Component
Level 1

First Component
Writing Your First React Component

Level 1 – Section 1

React is a JavaScript library for building user interfaces (UIs). Some people use it as the V in MVC.

Conceived at Facebook
Heavily used on products made by Facebook and Instagram.
Built to simplify the process of building complex UIs.

Why React?
React was built to solve one problem: building large
applications with data that changes over time.

All these companies
use React!

What Is React? (Model-View-Controller)
I heard it was good

http://javascript-roadtrip.codeschool.com

New to JavaScript? Go here first!

http://es2015.codeschool.com
Not familiar with ES2015? Go here!

• Declaring variables
• Creating and invoking functions

JavaScript Basics

• Class syntax
• Arrow functions
• Spread operator

ES2015

Prerequisites

http://javascript-roadtrip.codeschool.com

<h1>Hello</h1>

Hello

Component

Component

We’ll cover some of the features React
offers, including how to:

• Write React components
• Render data to the page
• Make components communicate
• Handle user events
• Capture user input
• Talk to remote servers

Button

Type your name

What We’ll Learn

In React, we solve problems by creating components. If a component gets too complex, we break
it into smaller, simpler components.

Component-based Architecture

StoryBox

StoryForm

Story

Story component  
is reused

(root component)

adds new stories to the feed

information about each story in our feed

Story

A component in React works similarly to JavaScript functions: It generates an output every time
it is invoked.

What Is a React Component?

Calling render()  
generates this

Output #2

Output #1
<div>
<p>Good Morning</p>
<p>10:45AM</p>
</div>

<div>
<p>Good Morning</p>
<p>10:55AM</p>
</div>

Calling render()  
generates this

A React component

The Virtual DOM Explained

<div>
<p>Good Morning</p>
<p>10:45AM</p>
</div>

<div>
<p>Good Morning</p>
<p>10:45AM</p>
</div>

Virtual DOM HTML

Component render

In-memory representation of  
what w ill become real elements

The virtual DOM is an in-memory representation of real DOM elements generated by React
components before any changes are made to the page.

Actual elements displayed  
on the browser

(Step 1) (Step 2)

Virtual DOM diffing allows React to minimize changes to the DOM as a result of user actions —
therefore, increasing browser performance.

The Virtual DOM in Action

Only this paragraph has changed... ...and only this paragraph
is replaced.

Other elements  
remain untouched

<div>
<p>Good Morning</p>
<p>10:45AM</p>
</div>

<div>
<p>Good Morning</p>
<p>10:45AM</p>
</div>

<div>
<p>Good Morning</p>
<p>10:55AM</p>
</div>

<div>
<p>Good Morning</p>
<p>10:55AM</p>
</div>

<p>10:55AM</p>

Virtual DOM

Virtual DOM HTML

HTML

Component rendering
for the first time

Component rendering
for the second time

Creating Our First React Application
We want to simply print a message to the screen using a React component.

Story Box

<div>Story Box</div>

Components in React are JavaScript classes that inherit from the React.Component base class.

Writing Our First React Component

Component class inherits from  
a React base class.

Every component needs
a render() function.

class StoryBox extends React.Component {
 render() {
 return(<div>Story Box</div>);
 }.
}/

No quotes needed —
don't freak out.

Now we need to tell our application where to put the result into our web page.

components.js

Components are written
in upper camel case.

Rendering Our First React Component

ReactDOM.render(
 <StoryBox />, document.getElementById('story-app')
);

class StoryBox extends React.Component {
 render() {
 return(<div>Story Box</div>);
 }.
}/

Invoke StoryBox — 
 again, we don't need quotes

Target container where component  
will be rendered to

We use ReactDOM to render components to our HTML page as it reads output from a supplied
React component and adds it to the DOM.

StoryBox

Renderer

components.js

Referencing the Component

class StoryBox extends React.Component {
 render() {
 return(<div>Story Box</div>);
 }.
}/

Every time we create a new React component, we use it by writing an element named
after the class.

StoryBox

Renderer

Using StoryBox component

components.js

ReactDOM.render(
 <StoryBox />, document.getElementById('story-app')
);

Application Structure

<!DOCTYPE html>
<html>
 <body>
 <div id="story-app"></div>

Target container

ReactDOM.render(
 <StoryBox />, document.getElementById('story-app')
);

...

That’s all there is to creating a component. Now we just need to add libraries.

components.js

index.html

 </body>
</html>

Application Structure

index.html

components.js

react.js
react-dom.js

vendors

babel.js Allows using latest features of  
JavaScript (class syntax, fat arrow, etc.)

React libraries

<!DOCTYPE html>
<html>
 <body>
 <div id="story-app"></div>

Holds all our React
components

Story Box

Project Folder

index.html

 </body>
</html>

 <script src="vendors/react.js"></script>
 <script src="vendors/react-dom.js"></script>
 <script src="vendors/babel.js"></script>
 <script type="text/babel"  
 src="components.js"></script>

Our React Application Flow
To clarify, here is what takes place when we load a page with a React component:

StoryBox

Renderer

index.html

Virtual DOM

<script
<script

<script

First, the static HTML  
page is loaded...

...then then React library and our  
custom component is loaded...

...then the ReactDOM renderer
renders the component....

...returning a virtual representation  
of the DOM, which is turned into  
real DOM elements.

Story Box

Animation: show blank browser when
index.html is loaded..

...then animate Story Box after "Virtual
DOM"

Quick Recap on React

React was built to solve one problem: 
building large applications with data
that changes over time.

In React, we write apps in terms of
components.

We use JavaScript classes when
declaring React components.

Components must extend the
React.Component class and must
contain a render() method.

We call the ReactDOM.render()
function to render components to a
web page.

First Component
Understanding JSX

Level 1 – Section 2

The markup we use when writing React apps is not a string. This markup is called JSX  
(JavaScript XML).

No Quotes Around Markup

class StoryBox extends React.Component {
 render() {
 return(

ReactDOM.render(
 <StoryBox />, document.getElementById('story-app')
);

HTML elements are  
written in lowercase.

React components are written  
in upper camel case.

 }?
}?

); <div>Story Box</div>

JSX is just another way of writing JavaScript with a transpile step.

A New Way to Write JavaScript

class StoryBox extends React.Component {
 render() {
 return(

React.createElement('div', null, 'Story Box')

Transpiled JSX Code

ReactDOM.render(
 <StoryBox />, document.getElementById('story-app')
);

React.createElement(StoryBox, null)

Transpiled JSX Code

This JSX becomes…

This JSX becomes… }?
}?

); <div>Story Box</div>

JSX looks similar to HTML, and it is ultimately transformed into JavaScript.

Getting Used to the JSX Syntax

React.createElement("div", null,
 React.createElement("h3", null, "Stories App"),
 React.createElement("p", {className:"lead"}, "Sample paragraph")
);

Resulting JavaScript code Transpiled JSX code

class StoryBox extends React.Component {
 render() {
 return(
 <div>
 <h3>Stories App</h3>
 <p className="lead">Sample paragraph</p>
 </div>

 }?
}?

Notice we are using className and not class,
 which is a JavaScript-reserved keyword.

);

From JSX to HTML

React.createElement("div", null,
 React.createElement("h3", null, "Stories App"),
 React.createElement("p", {className:"lead"}, "Sample paragraph")
);

... JSX

JavaScript

Stories App
Sample paragraph

All JSX gets transformed to JavaScript.

Rendered by the browser

Generated HTML

 <div>
 <h3>Stories App</h3>
 <p className="lead">Sample paragraph</p>
 </div>

...

Here, we’re displaying the current time using JavaScript’s native Date object and JSX.

Using the Date Object in JSX

class StoryBox extends React.Component {
 render() {

Stories App
Current time: 16:56:26 GMT-0400 (EDT)

Code written within curly braces gets  
interpreted as literal JavaScript.

 const now = new Date();

{now.toTimeString()}
 </p>

 return (
 <div>

 </div>
);
 }'
}"

 <h3>Stories</h3>
 <p className="lead">
 Current time:

Here, we’re displaying a list of elements using JSX and JavaScript’s native map function.

Iterating Arrays in JSX

class StoryBox extends React.Component {
 render() {

Stories App
Current time: 16:56:26 GMT-0400 (EDT)

• HTML
• JavaScript
• React

HTML

This function returns this JSX array.

JavaScript
React

 const topicsList = ['HTML', 'JavaScript', 'React'];

 </div>
);
 }'
}"

 {topicsList.map(topic => {topic})}

 return (
 <div>

...

...

Quick Recap on JSX

JSX stands for JavaScript XML.

JSX markup looks similar to HTML,
but ultimately gets transpiled to
JavaScript function calls, which
React will know how to render to the
page.

Code written within curly braces is
interpreted as literal JavaScript.

It is a common pattern to map arrays
to JSX elements.

Talk Through Props
Level 2

Talk Through Props
Building an App

Level 2 – Section 1

I wanna know what love
is!

We are building a commenting engine that will allow visitors to post comments on a blog post,
picture, etc.

The App We’re Building

Commenting engine app

Adding Components to Our Comments App
What the structure of our React app should look like.

Comment

Comment

CommentBox

Pattern for Adding New Components
There are some common things we always do when creating new components.

class NewComponent extends React.Component {
 render() {
 return (...);
 }
}

1. New class
2. Inherit from React.Component

3. Return JSX from render function

HTML

Let’s start with an HTML mockup and identify potential components by looking at the markup.

Coding the Comment List

<div class="comment-box">
 <h3>Comments</h3>
 <h4 class="comment-count">2 comments</h4>
 <div class="comment-list">

CommentBox component

Comment component <div

Animation: magic move from here

="comment-footer-delete">
 Delete comment

 </div>
 </div>

="comment">
="comment-header">Anne Droid</p>
="comment-body">

 I wanna know what love is...
 </p>

="comment-footer">

class
class
class

class
class<a href="#"

<p
<p

<div

The Comment component renders the markup for each comment, including its author and body.

Writing the Comment Component

class Comment

<Comment />

Can now be used as JSX, like this:

class becomes className in JSXAnimation: to here, changing "class" to
"className");

 }
}

="comment-footer-delete">

="comment">
="comment-header">Anne Droid</p>
="comment-body">

="comment-footer">

className
className
className

<p
<p

className<div
className<a href="#"

 I wanna know what love is...
 </p>

 Delete comment

 </div>
 </div>

 <div

 render() {
 return(

extends React.Component {

 <div className="comment-box">
 <h3>Comments</h3>
 <h4 className="comment-count">2 comments</h4>
 <div className="comment-list">
 <Comment

class CommentBox

Now we’ll declare the CommentBox component and use the previously declared Comment
component.

Writing the CommentBox Component

Using the Comment
component

 render() {
 return(

extends React.Component {

/>
<Comment />

 </div>
 </div>
);
 }/
}?

Arguments passed to components are called props. They look similar to regular HTML element
attributes.

React Components Accept Arguments

Passing arguments
to Comment

 render() {
 return(

 author="Morgan McCircuit" body="Great picture!"

 author="Bending Bender" body="Excellent stuff"

/>
<Comment

/>

extends React.Component {

 <div className="comment-box">
 <h3>Comments</h3>
 <h4 className="comment-count">2 comments</h4>
 <div className="comment-list">
 <Comment

class CommentBox

 </div>
 </div>
);
 }/
}?

Arguments passed to components can be accessed using the this.props object.

Reading Props in the Comment Component

class Comment extends React.Component {
 render() {
 return(
 <div className="comment">
 <p className="comment-header">{this.props.author}</p>
 <p className="comment-body">
 {this.props.body}
 </p>
 <div className="comment-footer">

 Delete comment

 </div>
 </div>
);
 }
}

Reading the author prop

Reading the body prop

We use the this.props object to read parameters that were passed to the component.

Passing and Receiving Arguments Review

<Comment
 author="Morgan McCircuit"
 body="Great picture!" />

Passing Props Receiving Props

class Comment extends React.Component {
 render() {
 return(
 ...
 <p className="comment-header">
 {this.props.author}
 </p>
 <p className="comment-body">
 {this.props.body}
 </p>
 ...
);
 }
}

Reads arguments passed to a component

Quick Recap on Props

Convert HTML mockup to React
components

Created two components:
CommentBox and Comment

How to pass arguments to
components using props

Props look like HTML element
attributes

We just covered a lot of content — here’s a summary of what we learned.

Talk Through Props
Passing Dynamic Arguments

Level 2 – Section 2

class CommentBox extends React.Component {
 render() {
 return(
 <div className="comment-box">
 <h3>Comments</h3>
 <h4 className="comment-count">2 comments</h4>
 <div className="comment-list">
 <Comment
 author="Morgan McCircuit" body="Great picture!" />
 <Comment
 author="Bending Bender" body="Excellent stuff" />
 </div>
 </div>
);
 }
}

We are passing literal strings as props, but what if we wanted to traverse an array of objects?

Problem: Props Aren’t Dynamic Yet

Hardcoded values

Typically, when we consume data from API servers, we are returned object arrays.

JavaScript Object Arrays

JavaScript

 const commentList = [
 { id: 1, author: 'Morgan McCircuit', body: 'Great picture!' },
 { id: 2, author: 'Bending Bender', body: 'Excellent stuff' }
];

Great picture!Excellent stuff

We can use JavaScript’s map function to create an array with Comment components.

Mapping an Array to JSX

class CommentBox extends React.Component {
 ...
 _getComments() {

...with a new component built for
each element present in commentList.

New method that will return array of JSX elements

Underscore helps distinguish custom
methods from React methods

Returns an array...
 return commentList.map((

 const commentList = [
 { id: 1, author: 'Morgan McCircuit', body: 'Great picture!' },
 { id: 2, author: 'Bending Bender', body: 'Excellent stuff' }
];

);/><Comment

}.

 });
 }-

) => {
 return (

class CommentBox extends React.Component {
 ...
 _getComments() {

The callback to map takes an argument that represents each element from the calling object.

Passing Dynamic Props

...which we can use to access  
properties and pass them as props.

Each element from commentList
is passed as argument...comment

 author={comment.author} body={comment.body}

 });
 }-
}.

);

<Comment
 return (

) => { return commentList.map((

 const commentList = [
 { id: 1, author: 'Morgan McCircuit', body: 'Great picture!' },
 { id: 2, author: 'Bending Bender', body: 'Excellent stuff' }
];

/>

Using Unique Keys on List of Components

class CommentBox extends React.Component {

Unique key

Specifying a unique key when creating multiple components of the same type can help
improve performance.

 });
 }-
}.

);
/>key={comment.id} author={comment.author} body={comment.body}

<Comment
 return (

comment) => { return commentList.map((

 const commentList = [
 { id: 1, author: 'Morgan McCircuit', body: 'Great picture!' },
 { id: 2, author: 'Bending Bender', body: 'Excellent stuff' }
];

 ...
 _getComments() {

We’ll store the returned value in a variable named comments and use it for display purposes.

Using the _getComments() method

class CommentBox extends React.Component {

JSX knows how to render arrays

 render() {

 return(
 <div className="comment-box">
 <h3>Comments</h3>
 <h4 className="comment-count"> </h4>
 <div className="comment-list">

 </div>
 </div>
);
 }

 _getComments() { ... }
}

 const comments = this._getComments();

{comments.length} comments

{comments}

1 comments

3 comments

Incorrect Grammar on the Comments Title

0 comments

The title has incorrect grammar in some cases.

...but this is wrong!

This is correct...

2 comments

Let’s write a new method called _getCommentsTitle() that handles the plural case in our title.

Fixing the Title With Comment Count

class CommentBox extends React.Component {

Uses same convention with  
starting underscore

 _getCommentsTitle(commentCount) {
 if (commentCount === 0) {
 return 'No comments yet';
 } else if (commentCount === 1) {
 return '1 comment';
 } else {
 return `${commentCount} comments`;
 }
 }

 ...

Getting the Correct Comments Title
Let’s call the method we just created from our component’s render function.

Get proper title for  
our component

class CommentBox extends React.Component {

 {this._getCommentsTitle(comments.length)}

 render() {
 const comments = this._getComments();
 return(
 ...
 <h4 className="comment-count">

 </h4>
 ...
);
 }

 _getCommentsTitle(commentCount) { ... }

 ...
}

1 comment

2 comments

3 comments

Title Issue Is Fixed
The title now handles different quantities of comments accordingly.

No comments yet

All are correct!

Quick Recap on Dynamic Props

How to pass dynamic props using
variables

How to map object arrays to JSX
arrays for display purposes

Used JavaScript to handle plural case
on the title

Dynamic props can be a bit mind boggling. Here’s a summary of what we learned.

Component State
Level 3

Component State
Handling Data Changes With State

Level 3

We’d like to add a button to the page that will let users toggle the comments.

Show and Hide Comments

Click to show comments Click to hide comments

How can we show and hide comments  
based on button clicks?

Different Ways to Manipulate the DOM

1. Direct DOM Manipulation

2. Indirect DOM Manipulation

jQuery, Backbone, etc.

React

Direct DOM Manipulation

Events DOM updates

$('.show-btn').on('click', function() {
 $('.comment-list').show();
})

$('.hide-btn').on('click', function() {
 $('.comment-list').hide();
})

One way to manipulate the DOM API is by modifying it directly via JavaScript in response to
browser events.

Example using jQuery:

Manually manipulating the DOM

User code does this.

Indirect DOM Manipulation

Events DOM updates

In React, we don’t modify the DOM directly. Instead, we modify a component state object in
response to user events and let React handle updates to the DOM.

Update state

User code does this.

React does this.

Example using React:

Display logic based on state

render() {
 if (this.state.showComments) {
 // code displaying comments
 } else {
 // code hiding comments
 }
}

How to Use State in a Component
The state is a JavaScript object that lives inside each component. We can access it via this.state.

class CommentBox extends React.Component {
 ...
 render() {
 const comments = this._getComments();

Create list of comments if state is true.

We also need to move these comments into the conditional.

 </div>
);
 }/
 ...
}.

 }.
 return(
 <div className="comment-box">
 <h4 className="h4">{this._getCommentsTitle(comments.length)}</h4>

 // add code for displaying comments
 if (this.state.showComments) {

<div className="comment-list">{comments}</div>

Showing Comments Only if State Is true

class CommentBox extends React.Component {
 ...
 render() {
 const comments = this._getComments();

Now being displayed based on
component's state!

 </div>
);
 }/
 ...
}.

 {commentNodes}

 }.
 return(
 <div className="comment-box">
 <h4 className="h4">{this._getCommentsTitle(comments.length)}</h4>

 commentNodes =
 if (this.state.showComments) {
 let commentNodes;

<div className="comment-list">{comments}</div>;

We set the initial state of our component in the class constructor.

Hiding Comments on the Initial State

class CommentBox extends React.Component {

 constructor() {
 super();

 this.state = {
 showComments: false
 };
 }

 render() {
 ...
 }
 ...
}

super() must be called in our
constructor.

Initial state hides comments.

We don’t assign to the state object directly — instead, we call setState by passing it an object.

How to Update a Component’s State

this.state.showComments = true

this.setState({showComments: true })

Calling setState will only update the properties passed as 
an argument, not replace the entire state object.

Updates the showComments property 
and re-renders component

Setting state this way won't work.

State changes are usually triggered by user interactions with our app.

Causing State Change

• Button clicks
• Link clicks
• Form submissions
• A JAX requests
• And more!

Things that could cause state change:

Button clicks can cause a
change of state.

Loading comments from a remote server
can also cause a change of state.

Let’s add a button that will toggle the showComments state when a click event is fired.

Handling Click Events

class CommentBox extends React.Component { ...
 render() {
 ...

Toggles state of showComments between true and false

Button that will toggle state on click event

Button click calls _handleClick() Shows and
hides comments

}

 _handleClick() {
 this.setState({
 showComments: !this.state.showComments
 });
 }

 ...
);
 }

</button>Show comments <button onClick={this._handleClick.bind(this)}>

 return(
 ...

Button Text Logic Based on State

class CommentBox extends React.Component { ...
 render() {
 ...

Switch button text based on
current state

Renders button with according text

We can switch the button text based on the component’s state.

}

 ...
);
 }

 <button onClick={this._handleClick.bind(this)}>

 return(
 ...

{buttonText}</button>

 let buttonText = 'Show comments';

 if (this.state.showComments) {
 buttonText = 'Hide comments';
 ...
 }

...

Our app shows and hides comments when the button is clicked.

Demo: Hide and Show Comments

Quick Recap on State

State represents data that changes
over time.

We declare an initial state in the
component’s constructor.

We update state by calling
this.setState().

The state is a vital part of React apps, making user interfaces interactive.

Calling this.setState() causes our
component to re-render.

Synthetic Events
Level 4

Synthetic Events
Capturing User Actions

Level 4

We want to let users add new comments to our app.

Adding New Comments

CommentForm

How should we build
this new form in React?

New component

Name:

Comment:

CommentForm is a new component that will allow users to add comments to our app.

New Component: CommentForm

CommentBox

Name:

Comment:

CommentForm

Comment

this is what we're
building

Coding the CommentForm Component

class CommentForm extends React.Component {
 render() {
 return (
 <form className="comment-form"

CommentForm

JSX markup for CommentForm

Name:

Comment:

CommentForm

 <input placeholder="Name:"

}

);
 }.

 </form>

 </div>
 <div className="comment-form-actions">
 <button type="submit">
 Post comment
 </button>
 </div>

>
 <label>Join the discussion</label>
 <div className="comment-form-fields">

 <textarea placeholder="Comment:"
/>

</textarea>>

Adding an Event Listener to Our Form

class CommentForm extends React.Component {
 render() {
 return (
 <form className="comment-form"

Adds an event listener to the submit event

Don't forget to bind event handlers,
otherwise this will not work!

To add an event listener to the form, we use the onSubmit prop and pass a handler to it.

Prevents page from reloading

}

 _handleSubmit(event) {
 event.preventDefault();
 }

);
 }.

 </form>
...

 <input placeholder="Name:"
...

> onSubmit={this._handleSubmit.bind(this)}

/>
 <textarea placeholder="Comment:" </textarea>>

Problem: Can’t Access User Input in handleSubmit()

class CommentForm extends React.Component {
 render() {
 return (
 <form className="comment-form"

No way to access input and text
area from submit handler

}

 _handleSubmit(event) {
 event.preventDefault();
 }

);
 }.

 </form>
...

 <input placeholder="Name:"
...

> onSubmit={this._handleSubmit.bind(this)}

/>
 <textarea placeholder="Comment:" </textarea>>

Accessing Form Data From Handler

class CommentForm extends React.Component {
 render() {
 return (
 <form className="comment-form"

We'll use these refs to
access values from the
input elements.

We can use refs to assign form values to properties on the component object.

}

 _handleSubmit(event) {
 event.preventDefault();
 }

);
 }.

 </form>
...

>
</textarea>

 <textarea placeholder="Comment:" ref={(textarea) => this._body = textarea}
 ref={(input) => this._author = input} <input placeholder="Name:" />

...
> onSubmit={this._handleSubmit.bind(this)}

What Setting the refs Is Actually Doing

<input placeholder="Name:" ref={
 function(input) {
 this._author = input;
 }.bind(this)
 }/>

this refers to CommentForm.

creates new class property
named _author

DOM element passed into callback

is the same as

Note: React runs ref callbacks on render.

 ref={(input) => this._author = input} <input placeholder="Name:" />

Passing the User Input to the CommentBox

class CommentForm extends React.Component {
 render() {
 return (
 ...
 <input placeholder="Name:" ref={(input) => this._author = input}/>
 <textarea placeholder="Comment:" ref={(textarea) => this._body = textarea}>
 ...
);
 }
 _handleSubmit(event) {
 event.preventDefault();

 }
}

Name:

Comment:

Populated from refs in JSX

CommentForm

This method has been passed as an
argument.

 let author = this._author;
 let body = this._body;

 this.props.addComment(author.value, body.value);

Name:

Comment:

The array of comments is part of the CommentBox component, so we need to propagate new
comments from CommentForm over to CommentBox.

Data About Comments Lives in CommentBox

Let’s include CommentForm and pass it a callback prop.

CommentBox

CommentForm CommentBox (Parent)

Has the comments
array in its state

Has the new comment data

Propagate data about new
comment to CommentBox

class CommentBox extends React.Component {

Name:

Comment:

Using CommentForm to Add Comments

Using the newly created CommentForm component...

CommentBox
...and passing it a callback prop...

...gets triggered by CommentForm
when a new comment is added.

Functions in JavaScript are first-class citizens, so we can pass them as props to other components.

animate second

}

}

 _addComment(author, body) {

 ...
 </div>
);
 }=

 <CommentForm addComment={this._addComment.bind(this)} />

animate first

 render() {
 return(
 <div className="comment-box">

 ...

 const comment = {
 id: this.state.comments.length + 1,
 author,
 body
 };
 this.setState({ comments: this.state.comments.concat([comment]) });

Adding Functionality to Post Comments

Updates state when function is called by adding new comment

class CommentBox extends React.Component {

New comment object

New array references help
React stay fast. So concat
works better than push here.

}
}

 _addComment(author, body) {
...

 ...
 </div>
);
 }=

 <CommentForm addComment={this._addComment.bind(this)} />

 render() {
 return(
 <div className="comment-box">

 ...

Currently, we’re defining an array every time the _getComments method is called. Let’s move this
data to the state.

Comments Are Not Part of the State

class CommentBox extends React.Component {

Defining a variable can help us with prototyping,  
but it's time to change this!

];

 ...
 }

}

 { id: 1, author: 'Morgan McCircuit', body: 'Great picture!' },
 { id: 2, author: 'Bending Bender', body: 'Excellent stuff' }

 ...
 _getComments() {

 const commentList = [

Since comments will change over time, they should be part of the component’s state.

Moving Comments to the State

Now part of the component's state

class CommentBox extends React.Component {

 { id: 1, author: 'Morgan McCircuit', body: 'Great picture!' },
 { id: 2, author: 'Bending Bender', body: 'Excellent stuff' }

]
 };
 }
 ...
}

 comments: [

 constructor() {
 super();

 this.state = {
 showComments: false,

Let’s use the comments from the state object to render our component.

Rendering Comments From the State

class CommentBox extends React.Component {

Reading from component's state
 ...
 _getComments() {

 return this.state.comments.map((comment) => {
 return (
 <Comment
 author={comment.author}
 body={comment.body}
 key={comment.id} />
);
 });

 }
}

Demo: CommentForm Working

Review: Event Handling in React
In order to ensure events have consistent properties across different browsers, React wraps
the browser’s native events into synthetic events, consolidating browser behaviors into one API.

Synthetic events are my jam!

eventSubmit

theSubmitEvent

submitEvent

submitEvent

onSubmit

For the full list of browser events supported by React,  
visit http://go.codeschool.com/react-events

Synthetic event Hypothetical different event
handling with browsers

http://go.codeschool.com/react-events

Quick Recap

We use React’s event system to
capture user input, including form
submissions and button clicks.

Refs allow us to reference DOM
elements in our code after the
component has been rendered.

Parent components can pass callback
functions as props to child
components to allow two-way
communication.

Synthetic events are a cross-browser
wrapper around the browser’s native
event.

Talking to Remote Servers
Level 5

Talking to Remote Servers
Using Lifecycle Methods to Load Comments

Level 5 – Section 1

In the real world, we’d want to pull comments from an API instead of hard-coding the data.

Comments Are Static

class CommentBox extends React.Component {

 constructor() {
 super();

 this.state = {
 showComments: false,
 comments: [

Hard-coded data

 };
 }/
 ...
}-

]

 { id: 1, author: 'Morgan McCircuit', body: 'Great picture!' },
 { id: 2, author: 'Bending Bender', body: 'Excellent stuff' }

Let’s set the initial state of comments as an empty array so we can later populate it with data from
an API server.

Loading Comments From a Remote Server

class CommentBox extends React.Component {

 constructor() {
 super();

 this.state = {
 showComments: false,
 comments: [Initialized to an empty array
 };
 }/
 ...
}-

]

index.html

components.js

react.js
react-dom.js

vendors

babel.js

Project Folder

jQuery will help us make Ajax requests. We can download it from the jQuery website and include
it in our HTML page.

Adding jQuery as a Dependency

jquery.js

Download it from the jQuery website

<!DOCTYPE html>
<html>
 <body>
 <div id="story-app"></div>
 <script src="vendors/react.js"></script>
 <script src="vendors/react-dom.js"></script>
 <script src="vendors/jquery.js"></script>
 <script src="vendors/babel.js"></script>
 <script type="text/babel"  
 src="components.js"></script>
 </body>
</html>

Brush up on your Ajax skills with
our jQuery: The Return Flight course

index.html

Let’s write a class method that will make Ajax requests in the CommentBox component.

How to Fetch Data in a Component

class CommentBox extends React.Component {

Makes call to the
remote server });

 }
}

 _fetchComments() {
 jQuery.ajax({
 method: 'GET',
 url: '/api/comments',

 ...

We call the setState method when data is received from the API server.

Setting State With Data From a Remote Server

class CommentBox extends React.Component {

Arrow function preserves  
the this binding to our class

...this refers to CommentBox

 });
 }
}

 success: (comments) => {
 this.setState({ comments })
 }

 _fetchComments() {
 jQuery.ajax({
 method: 'GET',
 url: '/api/comments',

 ...

Deciding Where to Call _fetchComments()

...

fetchComments calls
setState, which calls render()

That means we can't call _fetchComments()
from render — we'll get an infinite loop!

We need to call _fetchComments before render() is called.

class CommentBox extends React.Component {
 render() {
 }

 _fetchComments() {
 ...
 }

}

Lifecycle methods in React are functions that get called while the component is rendered for the
first time or about to be removed from the DOM.

React’s Lifecycle Methods

componentWillMount()

componentDidMount()

constructor()

For a full list of React’s lifecycle methods, visit 
http://go.codeschool.com/react-lifecycle-methods

TODO: make codeshcool short url

render()

We should call _fetchComments
here!

Note: In React, mounting means
rendering for the first time.

componentWillUnmount()

http://go.codeschool.com/react-lifecycle-methods

Fetching Data on the Mounting Phase

Fetch comments from server
before component is rendered.

The componentWillMount method is called before the component is rendered to the page.

class CommentBox extends React.Component {
 ...

 _fetchComments() {
 jQuery.ajax({
 method: 'GET',
 url: '/api/comments',
 success: (comments) => {
 this.setState({ comments })
 }
 });
 }
}

 componentWillMount() {
 _fetchComments();
 }

In order to check whether new comments are added, we can periodically check the server for
updates. This is known as polling.

Getting Periodic Updates

API

Updates comments

Requests comments

The componentDidMount method is called after the component is rendered to the page.

Polling Data on the Mounting Phase

...

class CommentBox extends React.Component {
 ...

}

Polling the server every
five seconds

5,000 milliseconds is
equal to five seconds

 componentDidMount() {
 setInterval(() => this._fetchComments(), 5000);
 }

Updating Component With New Comments
React optimizes the rendering process by only updating the DOM when changes are
detected on the resulting markup.

DOM change happens

Note: render() is called after each Ajax response because setState is in the response function.

New state value after  
initial Ajax request

No new state value after
second periodic Ajax request

New state value after
third periodic Ajax request

No DOM change

DOM change happens

Page changes in a single-page app environment will cause each CommentBox component to keep
loading new comments every five seconds, even when they’re no longer being displayed.

Memory Leaks on Page Change

Page change Page change

Still running from
previous page

Still running from
previous two pages

Our component grew
 because of this leak

Each component is responsible for removing any timers it has created. We will remove the timer
on the componentWillUnmount method.

Preventing Memory Leaks

...
class CommentBox extends React.Component {
 ...
 componentDidMount() {
 = setInterval(
 () => this._fetchComments(),
 5000
);
 }

}

Run when component is about to be
removed from the DOM

Store timer as
object property

 componentWillUnmount() {
 clearInterval(this._timer);
 }

this._timer

Our app can be freely navigated through now, without causing multiple unnecessary calls
to the API.

Memory Leak Is Gone

Page change Page change

Only one timer per page

Our component
is smaller again!

Reviewing the Steps for Loading Comments

2 - render() is called and CommentBox
is mounted.

1 - componentWillMount() is called.

3 - Component waits for API response and when
it is received, setState() is called, causing render()
to be called again.

4 - componentDidMount() is called, causing
this._fetchComments() to be triggered every five
seconds.

5 - componentWillUnmount() is called when the
component is about to be removed from the
DOM and clears the fetchComments timeout.

Steps 1 – 2 {

Steps 3 – 5 {

Quick Recap on Lifecycle Methods
Lifecycle methods in React are functions that get called during certain phases that components
go through.

componentWillMount() is called before
the component is rendered.

componentWillUnmount() is called
immediately before the component
is removed from the DOM.

componentDidMount() is called after
the component is rendered.

More lifecycle methods at 
http://go.codeschool.com/react-lifecycle-methods

http://go.codeschool.com/react-lifecycle-methods

Talking to Remote Servers
Adding and Deleting Comments on the Server Side

Level 5 – Section 2

Our comments have a Delete Comment button now, but no delete actions are associated to it.

Deleting Comments

Delete buttons  
do not work yet.

The CommentBox component needs a new method to delete individual comments.

Deleting From the API

class CommentBox extends React.Component {

Makes call to API to delete  
comment

Using ES2015 string template syntax

CommentBox

 }
}

 _deleteComment(comment) {

 jQuery.ajax({
 method: 'DELETE',

 });
 url: `/api/comments/${comment.id}`

 ...

We will not wait for the API request to be finished before updating the component’s state. We will
give our user immediate visual feedback, which is known as an optimistic update.

Updating the Comment List

class CommentBox extends React.Component {

Updates state with modified comments array

removes comment
from array

use spread operator to
clone existing array

CommentBox

 }
}

 const comments = [...this.state.comments];
 const commentIndex = comments.indexOf(comment);
 comments.splice(commentIndex, 1);

 this.setState({ comments });

 });

 ...
 _deleteComment(comment) {

 jQuery.ajax({
 method: 'DELETE',
 url: `/api/comments/${comment.id}`

Events are fired from the Comment component. Since the event handler is defined on the parent
component CommentBox, we’ll pass it as a prop named onDelete.

Passing a Callback Prop to Comment

CommentBox

Comment

class CommentBox extends React.Component {

Will later be called in the context
of the CommentBox component

Sends this._deleteComment as  
argument to child component

 ...
 _getComments() {

 return this.state.comments.map(comment => {
 return (
 <Comment
 key={comment.id}
 comment={comment}
 onDelete={this._deleteComment.bind(this)} />
);
 });

 }
}

Adding an Event Listener to the Delete Button
Let’s add an event listener to the Delete Comment button and call the onDelete callback prop.

Call the onDelete prop when button is clicked
...which invokes the _handleDelete()
function.

When a user clicks on the link,  
the onClick event is emitted...

class Comment extends React.Component {

same function Comment

 }
}

 render() {
 return(
 ...

 this.props.onDelete(this.props.comment);

 ...
);
 }.

 _handleDelete(e

Delete comment

 e
) {vent

.preventDefault();vent

Adding a Confirmation to the Delete Button

class Comment extends React.Component {

Let’s add an if statement and only call the onDelete callback prop if confirm was true.

Shown after button click

Show confirmation box before deleting

 if (confirm('Are you sure?')) {
 this.props.onDelete(this.props.comment);
 }

 render() {
 return(
 ...

 }
}

Delete comment
 ...
);
 }.

 _handleDelete(e) {
.preventDefault(); e

Comments Aren’t Added to a Remote Server

class CommentBox extends React.Component {
 ...
 _addComment(author, body) {

 const comment = {

We would like to post new comments to a remote server so they can persist across sessions.

ID should be generated
on the server side

Should make the server-side request before
updating the state

CommentBox

 }
}

 this.setState({ comments: this.state.comments.concat([comment]) });

 author, body }; id: this.state.comments.length + 1,

class CommentBox extends React.Component {
 ...
 _addComment(author, body) {

 const comment = {

We learned how to add new comments using a form. Now let’s make sure the new comments are
sent to a remote server so they can be persisted.

Posting Comments to a Remote Server

State is only updated when we get the
new comment from the API request

CommentBox }
}

 jQuery.post('/api/comments', { comment })
 .success(newComment => {
 this.setState({ comments: this.state.comments.concat([newComment]) });
 });

 author, body };

Control flows from higher level components down to child components, forcing changes to
happen reactively. This keeps apps modular and fast.

One-way Control Flow

CommentBox

CommentFormComment

Pass _deleteComment
as callback

Pass _addComment
as callback

Pass author and body
props to each comment

Quick Recap
Here’s a review of the two most important things we learned in this section.

Parent components can send data to
child components using props.

Child components can accept
callback functions as props to
communicate back with parent
components.

