G

,
MY

N
j
U
i
s
o

O
G
N
-
—
)
=
e
T

Anonymous Functions

1Z€NS O

4%
BT
M_..w_..rhfww ;

A Functions Are First-class Citizens

What does this mean? It means that in Elixir, functions can:

+ Be assigned to variables

+ Be passed around as arguments to other functions

* MIXING IT UP *
with

'ELIXIR:

~ R g Vs ‘\'
A el el At AL s Be & S AN b g N

* What We Know About Named Functions a\Qi

The functions we've worked with so far have a name and belong to a module.

defmodule Account do
def» max_balance(amount) do

"Max: #{amount}"
end

~
I"IC6(5®®> * MIXING IT UP *

with

‘ELIXIR

<
Account.max_bala

No Names, No Modules T a\Q‘:

Anonymous functions have no name and no modules. We create them with the syntax.

v

max_balance = fnCamount) -> "Max: #{amount}" end

In order to invoke anonymous functions, we must use the syntax.

max_balance.() <=

ef x* (BadArityError) #Function<....> with
arity 1 called with no arguments |

max_balance. (500)

Decoupling With Anonymous Functions *3

Named functions can take anonymous functions as arguments. This helps promote decoupling.

Account.run_transaction(100, 20, deposit)y

Account.run_transaction(100, 20, withdrawal)
A

How can we implement this? * MIXING IT UP »

with

‘ELIXIR

Anonymous Functions as Arguments o *;

The function signature is unchanged, but we must use from inside the function body.

defmodule Account do
def run_transaction(balance, amount, transaction) do

1t balance <= 0 do T

"Cannot perform any transacttet *
else ' Just like any other

transaction.(balance, amount) argument

end
end
end

The if statement represents logic
for performing the transaction...

* MIXING IT UP *
with

‘ELIXIR

Passing Anonymous Functions as Arguments *

We can pass anonymous functions as arguments, just like with other data types.

- deposit = fn(balance, amount) -> balance + amount end
withdrawal = fn(balance, amount) -> balance - amount end

Account.run_transaction(1000, 20, withdrawal)
Account.run_transaction(1000, 20, deposit)

Account.run_transaction(®, 20, deposit)

* MIXING IT UP *
with

‘ELIXIR

Pattern Matching in Anonymous Functions %

Similar to named functions, anonymous functions can also be split into multiple clauses using
pattern matching.

R SRV L ey N L

K Y
S L T R s S

The -> follows the - Clauses are brokewn into
arqument list. multiple lives.
9 P NN

account_transaction = fn
(balance, amount, :deposit) -> balance + amount

(balance, amount, :withdrawal)_ -> balance - amount
end

account_transaction. (100, 40, ::deposit)

account_transaction. (100, 40, :withdrawal)

* MIXING IT UP *
with

ELIXIR

X Anonymous Function Shorthand Syntax

The E operator is used to create helper functions in a short and concise way.

deposit = fn(balance, amount) -> balance + amount end
e A

— <
deposit = &(&1 + &2)

Account.run_transaction(1000, 20, deposit)

& Using the Shorthand Inline Con *;

The shorthand version of anonymous functions is often found used inline as arguments
to other functions. ‘ Can be defved

inline too!

Account.run_transaction(1000, 20, &(&1 + &2))

Enum.map is part of Elixir's standard library. It returns a list where each item is the result of
invoking a function on each corresponding item of enumerable.

Enum.map([1,2,3,4], &(&1L * 2))

Shorthand function that
multiplies its argument by 2

ginning

N
[
>
),
=

he End Is the Be

T

Lists & Recursion

1

Reading Elements From a List

We can use pattern matching on lists to read individual elements.

languages = ["Elixir™, "JavaScript”, "Ruby"]

[first, second, third] = languages

However, this does not scale well as the list grows...

languages = ["Elixir", "JavaScript"”, "Ruby", "Go"]

[first, second, third, fourth] = languages

* MIXING IT UP *
with

‘ELIXIR

Splitting a List With the cons Operator %

The cons operator n Is used to split a list into head (first element) and tail (remaining elements).

‘ languages = ["Elixir", "JavaScript”, "Ruby"]
[head | tail] = languages

languages = ["Elixir", "JavaScript”, "Ruby"]
1

head | _] anguages

* MIXING IT UP *
with

‘ELIXIR

Using cons in Function Pattern Matching *‘:

The cons operator can be used in function pattern matching to split lists into head and tail.

defmodule Language do
def print_list([head | tail]) do
I10.puts "Head: #{head}"
I0.puts "Tail: #{tail}"
end
end

Language.print_list(["Elixir", "JavaScript"”, "Ruby"])

* MIXING IT UP *
with

‘ELIXIR

No for Loops

There are no for loops in Elixir. How can we iterate through a list without using a for loop?

defmodule Language do
def print_list([head | tail]) do

4— Cannot use a loop here

Language.print_list(["Elixir", "JavaScript"”, "Ruby"])

9)®

Understanding Recursion e a\Q‘:

Recursive functions are functions that perform operations and then invoke themselves. ‘

defmodule Language do
def print_list([head | tail]) do

10.puts head
print_Llist(tail) «— Function invokes itself
end

def print_list([]) do
end
end

Two Cases for Recursion

All recursive functions involve the following two cases (or two clauses):

1. The base case, also called terminating scenario,

where the function does NOT invoke itself.
def print_list([]) do

end

2. The recursive case, where computation
happens and the function invokes itself.

def print_list([head | tail]) do
I0.puts head

print_list(tail)
end

* Loops With Recursion

splitting lists with the cons operator + pattern matching + recursion = loop

defmodule Language dg
def print_list([@ | @ ®]) do
I0.puts @ y def print_list([© || @]) do
print_list((@ @) I0.puts @
end print_list([@
end
def print_list([]) do,
end
| end

A |
def print_list([@ |||]) do
... 10.puts @
Tprint_list()
end

The Real Step-by-step Recursion Code

The principle of recursion can be applied to any other data types, like strings.

defmodule Language dg v
def print_Llist(["E"I ["J", "R"]]) do

T0.puts "E" L def print_list(["J"I["R"]]) do
print_list(["J", "R"]) I0.puts "J"
end print_Li1st(["R"])
end -
def print_list([]) do ..
end |
end

|
def print_Llist(["R" [[]]) do
e I0.puts "R"
Cprint_1ist([1)
end

X Loops With Recursion

splitting lists with the cons operator + pattern matching + recursion = loop

defmodule Language dg v
def print_Llist(["E"I ["J", "R"]]) do

10.puts "E" L def print_list(["J"I["R"]]) do
print_list(["J", "R"]) I0.puts "J"
end print_Li1st(["R"])
end K
def print_list([]) do ..
end |
end

|
def print_Llist(["R" [[]]) do
e I0.puts "R"
Cprint_1ist([1)
end

The Complete Recursive Code

Using recursion, we can now iterate through elements from a list!

defmodule Language do Q
def print_list([head | tail]) do
I0.puts head

print_list(tail)
end

def print_list([]) do
end
end

Language.print_list(["Elixir", "JavaScript"”, "Ruby"])

A v
L 3

Creating Tuples o . e *3

We use curly braces to represent tuples, an ordered collection of elements typically used ‘
as return values from functions.

4
{:functional, "elixir", 2012}

Tuples can hold many elements of different data types, but more often than not, we'll work
with two-element tuples where the first element is an atom.

.
{:0k, "some content"}

error, :enoent}

* MIXING IT UP *
with

‘ELIXIR

¥ Tuples & Pattern Matching

We can use pattern matching to read elements from tuples.

-
{status, content} = {:0k, "some content"}

A A

{:error, message} = {:error, "some error occurred"}
A A

* MIXING IT UP *
with

‘ELIXIR

Returning Tuples From Functions ‘° *g

The File.read function from Elixir's standard library returns a tuple with two elements: an atom
representing the status of the operation and either the content of the file or the error type.

{status,

{:0k, content} = File.read("transactions.csv"™)

{:0k, content} = File.read("file-that-doesnt-exist")

—’ x* (MatchError) no match of right hand side value: {:error, :enoent}

{:error, content} = File.read("file-that-doesnt-exist")

Pattern Matching Tuples From Functions il

We can pattern match tuples in function arguments to read values passed in function calls.

defmodule Account do
def parse_file({:0k, content}) do
I0.puts "Transactions: #{content}"
end

def parse_file({:error, error}) do
I0.puts "Error parsing file"
end
end

X Matching Successful Return Value |

The pipe operator can be used to pass the result of reading the given file over to the
newly created parse_file function from the Account module.

defmodule Account do

I Matching Unsuccessful Return Value a\Qi

Reading a file that does not exist matches the second clause. However, in this example, a warning
Is raised because the error variable is not being used from within the function.

defmodule Account do

def parse_file({:error, error}) do
I0.puts "Error parsing file”
end
end

File.read("does-not-exist") |>..."Account. parse_ﬁlé(j

I Matching Unsuccessful Return Value a\Q‘;

The underscore character is used to explicitly ignore unused values and avoid compiler warnings. |

!
defmodule Account do Q ?

def parse_file({:error, _ }) do

I0.puts "Error parsing file”

end
end

File.read("does-not-exist") - |>.~"Account.parse_file()

. f.lxmw. \.—A‘f.afu.avﬂw
(gt Lt
B . !

T
o Vs
oA
"

ks
A .
M
e 4
8 |

1

sts & Defaults

Keyword L

N
o
T
=
o

W
o

o

>
-

Listing Account Balance

An existing Account.balance function prints a balance based on a list of transactions.

Account.balance(transactions)

We want to pass formatting options, like currency (dollars, euros, GBP) and symbols ($, £, €)...

L 4
.

Account.balance(transactions,:

* MIXING IT UP *
with

‘ELIXIR

Passing Options With Keyword Lists *

A keyword list is a list of two-value tuples. They are typically used as the last argument in
function signatures, representing options passed to the function.

— Keyword list shortcut

Account.balance(..., currency: "dollar", symbol: "$")

Same thing — Keyword list full version

| Account.balance(..., [{:currency, "dollar"}, {:symbol, "$"}])

This is a tuple... «.and this is a tuple too!

* MIXING IT UP *
with

ELIXIR

A _ e caegiile ad

PR S VL L SERey N

Reading Keyword Lists

To read values from keyword lists, we can use and the variableName[keyName] notation.

defmodule Account do v formatting options
def balance(transactions, options) do

currency = options[:currency]
symbol = options[:symbol]

balance = calculate_balance(transactions)
"Balance 1n #{currency}: #{symbol t#{balance}"
end

end

Running With Options

The Account.balance function now accepts formatting options!

defmodule Account do
def balance(transactions, options) do
currency = options[:currency]
symbol = options[:symbol]

balance = calculate_balance(transactions)
"Balance 1n #{currency}: #{symbol}#{balance}"

end

end

Account.balance(transactions,
currency: "euros", symbol: "€")

Must Pass All Arguments

The code currently expects options to always be passed. Otherwise, it raises an error.

defmodule Account do
def balance(transactions, options) do
currency = options[:currency]
symbol = options[:symbol]

end

end

Account.balance(transactions)

x* (UndefinedFunctionError) function Account.balance/1
" 1s undefined or private. Did you mean one of:

* balance/2

1

Default Function Arguments

The symbol sets a default value to be used when none is passed during function call.

defmodule Account do
def balance(transactions, options \\ []) do
currency = options[:currency]

symbol = options[:symbol].¢\\§3

end No values returvned!

end

Account.balance(transactions)

X Defaults for Reading Keyword Lists _

The logical OR operator mcan be used to return a default value when a key is not present.

defmodule Account do
def balance(transactions, options \\ []) do
currency = options|:currency] || "dollar"
symbol = options[:symbol] /1| "$" «_:

end X +

If left side of || does ™ : ..then return this value
end not return a value... “: on right side.

.
o
<
Ny

‘ animated these dotted
 lines and this side-text last
Account.balance(transactions)

%

¥ Using Keyword Lists With the Ecto Library X

The Ecto library uses keyword lists to build SQL statements from Elixir code.

Repo allC from u 1n User,
’; where:

. where:

* MIXING IT UP *
with

‘ELIXIR

A v
L 3

Using Maps for Structures With Named Fields *;

§

:
r

]

A

We use curly braces with the percent sign E&##l to create maps, a collection of key-value pairs '
commonly used to represent a structure with named fields.

Keys

person = %{ "name" => "Brooke", "age" => 47 }

— Values

* Reading Maps With Map.fetch and Map.fetch!

The Map module from Elixir's standard offers a set of functions for working with maps.

Map.tetch returns a tuple when key is present

Map.fetch(person, "name™)

...and the :error atom when it's not.

Map.fetch(person, "banana™)

Map.tetch! returns a value when key is present

Map.fetch!(person, "name")

...and raises an error when it's not.

Map.fetch!(person, "banana")

_’.

*x (KeyError) key '"banana" not found in: %{"name" => "Brooke,
"age" => 42}
(elixir) lib/map.ex:164: Map.fetch!/2

Reading Maps With Pattern Matching

We can also use pattern matching to read values from a map.

*
*
<
L4

L 4
L 4

person:= %{ "name":=> "Brooke",
v :

age” => 42 }

%{ "name” => name, "age" => age . = person
. "

I10.puts name =" I1t's a match!

* MIXING IT UP *
with

‘ELIXIR

Matching Portions of a Map

Unlike tuples, with maps we can pattern match only the portion we are interested in.

age" => 42 }

person = %{ "name" => "Brooke",

%{ "name" => name } = person

I0.puts name

person = [{:name, "Booke"}, {:age, 47}]
[{:name, name}] = person
I0.puts name

** (MatchError) no match of right hand
side value: [name: "Booke", age: 42]

* MIXING IT UP *
with

‘ELIXIR

X Advanced Pattern Matching With Maps .

Even deeply nested keys in maps can be read using pattern matching.

person = %{ "name" => "Brooke",
"address" => %{ "city" => "Orlando",: "state":=> "FL"}}

llllllllllllllllllllllll
I
L 4

%{ "address" => %{ "state" => state }} = person

I[0.puts "State: #{state}"

* MIXING IT UP *
with

‘ELIXIR

Keyword Lists or Maps?

Here's a quick summary to help pick the appropriate data type.

Account.balance(transactions,

When to use keyword lists? currency: “dollar”, symbol: "$")

To pass optional values to functions.

person = %{ "name" => "Brooke", "age" => 47 }

%{ "name" => name } = person

When to use maps?
To represent a structure as a key-value storage.

* MIXING IT UP *
with

‘ELIXIR

A v
L 3

Listing Content FromaFile %

The function Account.list_transactions() takes a file name as argument and lists its contents.

defmodule Account do
def list_transactions(filename) do
{ result, content } = File.read(filename)

1f result == :0k do
"Content: #{content}"
else
1f result == :error do

"Error: #{content}"”

end

¥ MIXING IT UP *
end 2%

end x ELIX IB*

Nested if Statements Are HardtoRead .

Repeating variables (result, content) in nested if statements illustrate a common code smell.

defmodule Account do
def list_transactions(filename) do
{ result, content } = File.read(filename)

1f result == :ok do
"Content:
else
1T result cerror do
"Error: #{content}'

end
\ d * MIXING IT UP *
with

Same variable used across

end yiple if * LIXIB*
ple i statements
end IE

Using case to Test Values Against Patterns X |

The case statement tests a value against a set of patterns.

defmodule Account do
def list_transactions(filename) do
{ result, content } = File.read(filename)

.
case result do Value to be tested...

ok -> "Content: #{content}"
cerror -> "Error: #{content}"
end

Return values from 7
successful matches

* MIXING IT UP *
with

‘ELIXIR

Misleading Variable Names - *;

Using result as the test value for the case statement is leading to the use of the same variable
name (content) for the content of the file (when result is ;0k) or for the error (when result is :error).

defmodule Account do
def list_transactions(filename) do
{ result, content } = File.read(filename)
Let’s use something
else here...
ok -> "Content: #{content}"

cerror -> "Error: #{content}ﬂ¢\)

end
end

This is an error type

Syle and NOT the content... i

‘ELIXIR

Better Variable Names With case

The case statement accepts tuples for the test values as well as for the patterns to be

@

tested against. This gives us more flexibility for naming variables.

defmodule Account do

def list_transactions(filename) do
N
do Test value is a tuple!

case File.read(filename)
{ :0k, content } -> "Content: #{content}"

{ :error, type } -> "Error: #{type}"

end \\\\\ /f
4 & .
- More meanmgful

« Tuples can be used
as patterns too!

variable name

* MIXING IT UP *
with

‘ELIXIR

No Code Smell & Works as Expected

defmodule Account do
def list_transactions(filename) do
case File.read(filename) do
{ :0k, content } -> "Content: #{content}"
{ :error, type } -> "Error: #{type}"
end
end
end

Account.list_transactions("transactions.csv"™)

Account.list_transactions("does-not-exist")

* Using case with Guard Clauses

The case statement allows extra conditions to be specified with a guard clause.

defmodule Account do
def list_transactions(filename) do

case File.read(filename) dci/—~ built-in function

i terror, type } -> "Error: #{type}" ‘j
\ end does not list
\ transactions

returns true when file content is
greater than 10 characters.

_%# Account.list_transactions("loooong-list.csv") =

end

Level 4-2

Control Flow

The cond Statement

A v
L 3

Transferring Between Accounts

We'll write a function to transfer money between accounts.

Account.transfer_amount(112233, 445566, 150.50)

Account.transfer_amount(112233, 445566, 980)

Account.transfer_amount(112233, 445566, 15000)

Transfer Depends on Validation

The validation for a transfer involves the amount transferred and the hour of the day.

Part of Elixir's standard library

defmodule Account do W
def transfer_amount(from_account, tézfgpéunt, amount) do

1t !valid_transfer?(amount, hourOfDay) do

{:error, "Invalid Transfer"}
else

perform_transfer(from_account, to_account, amount)
end

A
end \ Defined elsewhere in

this module
end

X The Logic for the valid_transfer? Function

The amount allowed to be transferred depends on the time of the day.

---.
. % T

Morning (before noon)
No more than $5000 ()

Afternoon (before 6pm) 'Q"

No more than $1000 '

Evening (after 6pm) 4L :

No more than $300 , * MIXING IT UP »

*ELIXIB

And the Nested if Statements Attack Again! *;

We could implement this using nested if statements... but we've been there before, remember?

def valid_transfer?(amount, hourOfDay) do
1t hourOfDay < 12 do
amount <= 5000
else
1t hourOfDay < 18 do

amount <= 1000
else

amount <= 300
end

end %« MIXING IT UP *
with

r.".j KLIXIR

The cond Statement R _ x|

The cond statement checks multiple conditions and finds the first one that evaluates to true.

9

def valid_transfer?(amount, hourOfDay) do

cond do
2000 Block runs when

condition is true

hourOfDay < 17 :->:amount <=

hourOfDay < 18 -> amount <= 1000
true -> amount <= 300
end
enac

Catch all when vnone of the * MIXING IT UP *

previous conditions are true % ELIXIB*

A _ e caegiile ad

PR S VL L SERey N

Running the Transfer

The Account.transfer_amount function is now complete!

Account.transfer_amount(112233, 445566, 150.50)

Account.transfer_amount(112233, 445566, 980)

v S
Account.transfer_amount(112233, 445566, 1500) . CZ

To case or to cond?

We use case for matching on multiple patterns:

case File.read(filename) do
{ ok, content } -> "Content: #{content}"

{ :error, type } -> "Error: #{type}"
end

We use cond for checking multiple conditions:

cond do
hourOfDay < 17 -> amount <=

hourOfDay < 18 -> amount <=

true -> amount <= 300 * MIXING IT UP

- - EL[XIR:

. f.lsMM\ \.—Aﬁ.aru.av”b
(gt Lt
g

"L
o Vs
e
"

ot
w .
M
e 4
8 |

Projects

izing

N
LN
[
>
)
-

Tasks & Organ

ing

Runn

Benefits of a Well-structured Project o

Keeping a well-organized project and adopting a standard for project organization can
help in many ways. Here are three major benefits: *

+ Easier to navigate project files.

+ Facilitates collaboration from other developers on the team.

+ Facilitates onboarding new members.

* MIXING IT UP *
T with

2 EL[XIR

TN =

- e i ol et 2 R 2 S st g G

- ~

b O - ¥

‘ ~ Mix is a build tool installed with Elixir that provides tasks for creating

compiling, and test"i'hg El
projects, managing its dependencies, and more. T |

f‘ Name of the project Directories and files

: created for us!
mix new budget

=™ * creating README.md s

=] README.md

LINAR Sedbure, rad

il setwan

riw

o W SLERC ST RN

Your Mix project was created successfully.
. You can use "mix" to compile 1it, test it, and more:

oY 4

= mix.exs

cd budget

kX test 8 i
config e

Run "mix help" for more commands.

“IIIIIIIIIIIIIIIIIII. : g

lib

*assssmsEEEEEEEEEEEES 7

A
i S

5

EEEEER?®
y"

N S P T L P W S LT X i : . v =

e The only folder we need g
S ‘ to access for now o

Writing a New Function T AR . *

We'll define current_balance as part of the Budget module, created for us by the mix new command.

\

budget Created by Mix \

lib/budget.ex

defmodule do
def current_balance(initial, spending) do

1nitial - spending

i e r. lib end

end

New function defined by us - |

4 B a L Lo D ot i S e X Ee A

" Running Programs With mix run

(N N P L, " o151 ’ = o
s ‘ L . .
\ P f TN L : ” 3 3
») > » ~
: \
=
v, £ 1 . A—".
. BT
:
1 T
e
o
- i

The -e option tells the mix run command to evaluate a given code in the context of the application.

Lo Lo e S s d B Nk

‘ , Run from inside the ‘ g
E budget 4—— yrpiect root folder __ Backslash breaks command o

_ |_ * ¢ into multiple lines 4
mix run \ ¢

-e "Budget.current balance(100,20) [> IO.puts”

lll

--

~ What the mix run command does:

1. Compiles the budget application.

- 2. Lloads the generated bytecode into the Erlang Virtual Machine.

3. Detects the -e option and evaluates the argument as code.

* MIXING IT UP *
with

-EL]XIR-

 The Difference Between File Extensions %

Both .ex and .exs file extensions are treated the same way. The difference is intention: .ex files are
meant to be compiled while .exs files are used for scripting.

' Configuration
- E budget settings

=| mix.exs 4/

X files

- Generates production artifacts (.beam flles)
- Examples: lib files

E lib “u"ﬁ Elixir.Budget.beam .€XS flles

Compiled artifact - Does NOT generate production artifacts

- Examples: configuration files, test files
L i: % budget_test.exs '\

Test files

j test_helper.exs 4/

R Ry U o = "BYVON

e g S . : s s
S48 - N . -
R ¢ : o5 ax = S S aaa i

oy
1 3

in the mix help command to see the list of all available 1

~ ~ > > >

/

Runs the default task (current: "mix run")
app.start # Starts all registered apps
app.tree # Prints the application tree
archive # Lists installed archives
archive.build # Archives this project into a .ez file
Installs an archive locally
Uninstalls archives

h
archive.install
h

archive.uninstal

. f.lxmw. \.—A‘f.afu.avﬂw
(gt Lt
e Y

st
v .e(.\ﬁu
i
"

=%
w .
M
e 4
8 |

1eS

9
c
0
d
=
O
o
)
o
>
<)
o
=

Level 5-2
18

The Mix Tool
g With Third p

Workin

ey 2! Oa .~ ! T e e T e A ¢ B | e - LY A . I S 3 e e L e AT = A Tt o e € TR T NG Y v o gl A A on SASS TR R ALY L e AT R o o 'Sy - b o >

A XS Fa e UL P e MR Lis . 5 ¥ L . Rt LA SRR S e R e T W - e | Oy, 8 T . M P

o =g ~ e I o AL T o) BUSAE s S . . \ : <. e - il S e K k| TS L7 =7, \~lul PRV X0 S > o J

~ ' o s 2 (b e S Xk) § f i . <A LIy T wis LAY Bt Py 5N RN ATV R g sy

B g : 2 S AT R A h !) - ; ks i) : et a7 g T e MK e g P DS vy, TSNl s T R Yo oty DA IR R ¢

P e d U A o 1SN e ; . . S A 1Pk TR Sy LF e (AR WAL o el G LRSI RS G R e AN

3 . : v P N e s S vt N T , \ 4 C A oy S AR LS e ¥ e 20 SRy T Aty o G 5 S B T R I i =1
TR S = S 2 . : 4 PSRRI Al W BBt A g S L LRSS S Vo et b Sy, L O B - }
< 5 ' . M~ Vi A o 2T - Yo . > N \ 5y > WSy WS e R ST N £ e 9 S ¥ e P o PR PR N Y
- wi e » R M 5 Y _— \\‘ T A ~i o St I '——‘4 ' - e S ol ~3el N Y 3
2t i R A & T D L X A y
= ; 3 S N P e o . el y £) 1
A ' 1 55 O T e ST Sy) WA, % ’ -
‘ g 2 S e i) PR T R .
N N \
I - . i
' y
- »)
!
£ 1

Let’s write a new function from_euro_to_dollar() that takes an amount in € euros as its single argument |
and converts it to US$ dollars. We'll fetch the rate of the day from an external web service APL.

mix run -e "Budget.Conversion.from euro to dollar(1l5) [> IO.puts"”

=g | 15.957446808510639

1l mixX run %4) 2 GET to /rates

&

> </> >

B 15.957.. kEL'X'RCODEJ 3) JSON response

RATES
WEB SERVICE

Gl Creating a New Module

The new function will be part of the Conversion module, which itself is a submodule of Budget.
New module part of the Budget module

lib/budget/conversion.ex

defmodule Budget.Conversion do
def from_euro_to_dollar(amount) do

end
end

budget
&

. Create new folder
= | conversion.ex *

and new file

R -y Iy g

P - - W

* Declaring Third-party Dependencies

We use the mix.exs file to declare library dependencies our program depends on.

mix.exs

sl SIS (- (odule Budget Mixfile do

defp deps do
[{:httpoison, "~> 0.10.0"}, {:poison, "~> 3.0"}]
end
end

List of tuples

1 i
< ~

Installing Third-party Dependenc

- ' mix deps.get

Running dependency resolution P
— * Getting httpoison (Hex package) e

] config Checking package (https://repo.hex.pm/tarballs/httpoison-0.10.0.tar) :

: Using locally cached package

5 ~ * Getting poison (Hex package)

? H Checking package (https://repo.hex.pm/tarballs/poison-3.0.0.tar)

G Using locally cached package

e Pt ¥ S

PPN TLA e
e S AR e P

SN e

7O
D T T

|]

;_ . deps

httpoison

\‘c

- . = . P = A T i . T TR N T =

ach third-party dependency is A e
stored inside the deps directory. ' e

exjsx

The HTTPoison library is what we'll use to make HTTP calls to the remote web service.

lib/budget/conversion.ex

defmodule Budget.Conversion do
def from_euro_to_dollar(amount) do
url = "cs-currency-rates.codeschool.com/currency-rpotes”

case HITPoison.get(url) do
{:0k, response} -> parse(response) |> convert(amount)
{:error, _} -> "Error fetching rates”

end
end

end

Parsing JSON With the JSX library ¥

We use pattern matching to store the response body on the json_response variable and
the Poison library to parse JSON to an Elixir tuple.

lib/budget/conversion.ex

defmodule Budget.Conversion do

defp parse(%{status_code: 200, body: json_response}) do

Polson.Parser.parse(json_response)
end

end

_ defp means it’s a private function, not to
be called from outside its enclosing module.

K Y
S L T R s S

RN SRR SRy

i From JSON to List of Tuples b a\Qi

The parse function converts the JSON response from the remote server to a tuple, and passes
it as the first argument to the convert function.

[
{ "currency": "euro", "rate": 0.94 }, 4 Egééi
'{ "Cur‘r‘ency": "pOund", "rate": 0-79 } JSON response

|

RATES
WEB SERVICE

parse(response) |> convert(

{:0k, [

%{"currency" => "euro", "rate" => 0.94}%,
%{"currency" => "pound", "rate" => 0.79}

15

Finding Rates and Converting

The convert function grabs the list of tuples via pattern matching and calls find_euro to find the
rate for € euro. Lastly, it performs the conversion operation.

lib/budget/conversion.ex

defmodule Budget.Conversion do

defp convert({:ok, rates}, amount) do

rate = find_euro(rates)
amount / rate
end

end

e S Aa st £ S SN - o Rl AN

* Using Recursion to Find the Rate

We'll use pattern matching and recursion to find the rate for € euro from the list of all rates available.

lib/budget/conversion.ex

defmodule Budget.Conversion do _ When this match is successful...

"rate"” => rate} | _]) do
rate T

end
defp find_euro([_ | tail]) do*

find_euro(tail) No match on first element, so the function

end calls itself with the rest of the list.
defp find_euro([]) do

raise "No rate found for Euro" «—— No match and no more elements
end on the list, so we interrupt the

end program by raising an error.

~we return the rate!

Running the Complete Program

- We can run the program using mix run and see the expected results printed to the screen. e

NG >
e 1

. mix run GET to /rates
> </> >

% ® e | _"

15.95744... S L0 JSON response o

s RATES | | E
WEB SERVICE a8

mix run -e "Budget.Conversion.from euro to dollar(1l5) [> IO.puts"”

e 15.957446808510639 g

>
e
o

s o UNAVAILABLE

"Running With the Rates Web Service Do

If the rates web service is unavailable, running the program prints the friendly error message. =

>' mixX run GET to /rates

. | <f> :

1k ; > ELIXIR CODE
Error fetching rates

