

Citizens of the Unknown
Anonymous Functions

Level 1

Functions Are First-class Citizens
What does this mean? It means that in Elixir, functions can:

• Be assigned to variables

• Be passed around as arguments to other functions

defmodule Account do
 def max_balance(amount) do
 "Max: #{amount}"
 end
end

The functions we’ve worked with so far have a name and belong to a module.

Enclosing module

Function name

Account.max_balance(500)

Max: 500

Enclosing module

Function name

What We Know About Named Functions

No Names, No Modules
Anonymous functions have no name and no modules. We create them with the

Single argument

fn -> syntax.

max_balance = fn(amount) -> "Max: #{amount}" end

In order to invoke anonymous functions, we must use the

Must use a dot before
the parenthesis

max_balance.(500)

Max: 500

.() syntax.

max_balance.()

** (BadArityError) #Function<....> with
 arity 1 called with no arguments

Must pass argument

Stored in a variable

Decoupling With Anonymous Functions
Named functions can take anonymous functions as arguments. This helps promote decoupling.

How can we implement this?

These can be functions too!

Logic for performing the transaction... ...is decoupled from logic for each

individual transaction.

Account.run_transaction(100, 20, deposit)
Account.run_transaction(100, 20, withdrawal)

defmodule Account do
 def run_transaction(balance, amount, transaction) do
 if balance <= 0 do
 "Cannot perform any transaction"
 else
 transaction.(balance, amount)
 end
 end
end

Anonymous Functions as Arguments
The function signature is unchanged, but we must use from inside the function body..()

Just like any other
argument

The if statement represents logic 
for performing the transaction...

...and is decoupled from logic for
each individual transaction.

Passing Anonymous Functions as Arguments
We can pass anonymous functions as arguments, just like with other data types.

Account.run_transaction(1000, 20, withdrawal)
Account.run_transaction(1000, 20, deposit)

Account.run_transaction(0, 20, deposit)

1020

980

Cannot perform any transaction
Returns immediately when
the balance is 0 — remember?

deposit = fn(balance, amount) -> balance + amount end
withdrawal = fn(balance, amount) -> balance - amount end

Pattern Matching in Anonymous Functions
Similar to named functions, anonymous functions can also be split into multiple clauses using  
pattern matching.

account_transaction = fn
 (balance, amount, :deposit) -> balance + amount
 (balance, amount, :withdrawal) -> balance - amount
end

Clauses are broken into  
multiple lines.

140account_transaction.(100, 40, :deposit)
account_transaction.(100, 40, :withdrawal) 60

The -> follows the
argument list.

Anonymous Function Shorthand Syntax
The operator is used to create helper functions in a short and concise way.&

deposit = fn(balance, amount) -> balance + amount end

&(&1 + &2)deposit =

Turns the expression into a function

Numbers represent
each argument.

Account.run_transaction(1000, 20, deposit)

The shorthand can be stored in a variable and passed
as argument to a function, just like before!

1020

Same thing

Using the Shorthand Inline

Account.run_transaction(1000, 20,)&(&1 + &2)

Can be defined
inline too!

Enum.map([1,2,3,4], &(&1 * 2))

The shorthand version of anonymous functions is often found used inline as arguments
to other functions.

[2, 4, 6, 8]

Shorthand function that
multiplies its argument by 2

Enum.map is part of Elixir’s standard library. It returns a list where each item is the result of
invoking a function on each corresponding item of enumerable.

1020

The End Is the Beginning
Lists & Recursion

Level 2

Reading Elements From a List
We can use pattern matching on lists to read individual elements.

Can’t catch all remaining at once

languages = ["Elixir", "JavaScript", "Ruby"]

However, this does not scale well as the list grows...

languages = ["Elixir", "JavaScript", "Ruby", "Go"]
[first, second, third, fourth] = languages

[first, second, third] = languages

Splitting a List With the cons Operator
The cons operator is used to split a list into head (first element) and tail (remaining elements).

"Elixir" ["JavaScript", "Ruby"]

languages = ["Elixir", "JavaScript", "Ruby"]
[head | tail] = languages

|

languages = ["Elixir", "JavaScript", "Ruby"]
[head | _] = languages

...and ignore the rest with
no compiler warnings.

Pick the first...

Language.print_list(["Elixir", "JavaScript", "Ruby"])

Using cons in Function Pattern Matching
The cons operator can be used in function pattern matching to split lists into head and tail.

Head: Elixir
Tail: JavaScriptRuby

defmodule Language do Split single list argument
into head and tail

 end

IO.puts "Head: #{head}"
IO.puts "Tail: #{tail}"

end

def print_list([head | tail]) do

No for Loops

Language.print_list(["Elixir", "JavaScript", "Ruby"])

There are no for loops in Elixir. How can we iterate through a list without using a for loop?

Elixir
JavaScript
Ruby

defmodule Language do

????? Cannot use a loop here

...but we want this.Head: Elixir
Tail: JavaScriptRuby We see this now...!

 end
end

def print_list([head | tail]) do

Understanding Recursion
Recursive functions are functions that perform operations and then invoke themselves.

Matches when invoked with
empty list as argument

defmodule Language do

Function invokes itself Two clauses
 end

end

 IO.puts head
 print_list(tail)

 def print_list([]) do
 end

def print_list([head | tail]) do

Two Cases for Recursion
All recursive functions involve the following two cases (or two clauses):

1. The base case, also called terminating scenario,  
where the function does NOT invoke itself.

def print_list([]) do
end

2. The recursive case, where computation  
 happens and the function invokes itself.

 end

 IO.puts head
 print_list(tail)

def print_list([head | tail]) do

print_list(

def print_list([|
defmodule Language do

Language.print_list([

Loops With Recursion
splitting lists with the cons operator + pattern matching + recursion = loop

])

]) do

def print_list([|]) do[]

[]

def print_list([|]) do

 print_list(

][

][
][

[] end

 def print_list([]) do
 end
end

IO.puts

end

 IO.puts

 print_list(
IO.puts

)
)

end
)

Language.print_list([

The Real Step-by-step Recursion Code
The principle of recursion can be applied to any other data types, like strings.

])

]) do

def print_list([|]) do

def print_list([|]) do

"E", "J", "R"

"E" ["J", "R"]
"E"

["J", "R"]

defmodule Language do

"J" ["R"]
"J"

["R"]

"R" []
"R"

[]

 end

 def print_list([]) do
 end
end

print_list()
IO.puts

def print_list([|

end
 print_list()
 IO.puts

 print_list()
IO.puts

end

Language.print_list([

Loops With Recursion
splitting lists with the cons operator + pattern matching + recursion = loop

])

]) do

def print_list([|]) do

def print_list([|]) do

"E", "J", "R"

"E" ["J", "R"]
"E"

["J", "R"]

defmodule Language do

"J" ["R"]
"J"

["R"]

"R" []
"R"

[]

 end

 def print_list([]) do
 end
end

print_list()
IO.puts

def print_list([|

end
 print_list()
 IO.puts

 print_list()
IO.puts

end

The Complete Recursive Code
Using recursion, we can now iterate through elements from a list!

Language.print_list(["Elixir", "JavaScript", "Ruby"])

Elixir
JavaScript
Ruby

defmodule Language do
 def print_list([head | tail]) do
 IO.puts head
 print_list(tail)
 end

 def print_list([]) do
 end
end

Tuples & Maps
Tuples

Level 3–1

Creating Tuples
We use curly braces to represent tuples, an ordered collection of elements typically used
as return values from functions.

{:functional, "elixir", 2012}A valid tuple

Tuples can hold many elements of different data types, but more often than not, we’ll work  
with two-element tuples where the first element is an atom.

{}

{:ok, "some content"}
{:error, :enoent}

First element is
usually an atom

Data type for second  
element will vary

atom representing an
unknown file error

Different data types

Tuples & Pattern Matching
We can use pattern matching to read elements from tuples.

{status, content} = {:ok, "some content"}

Match!

Match!

:ok "some content"

:error "some error occurred"

{:error, message} = {:error, "some error occurred"}

Returning Tuples From Functions
The File.read function from Elixir’s standard library returns a tuple with two elements: an atom  
representing the status of the operation and either the content of the file or the error type.

** (MatchError) no match of right hand side value: {:error, :enoent}

{status, content} = File.read()

Path to fileEither :ok or :error Content or error type

{:ok, content} = File.read("file-that-doesnt-exist")

{:ok, content} = File.read("transactions.csv")

{:error, content} = File.read("file-that-doesnt-exist")

Pattern Matching Tuples From Functions
We can pattern match tuples in function arguments to read values passed in function calls.

This clause matches a
successful File.read operation.

This clause matches an
unsuccessful File.read operation.

defmodule Account do
 def parse_file({:ok, content})

end

 do
 IO.puts "Error parsing file"
 end

def parse_file({:error,

 do
 IO.puts "Transactions: #{content}"
 end

})error

The pipe operator can be used to pass the result of reading the given file over to the
newly created parse_file function from the Account module.

Matching Successful Return Value

Content: 01/12/2016,deposit,1000.00  
01/12/2016,withdrawal,10.00
01/13/2016,withdrawal,25.00,
...

File.read("transactions.csv") |> Account.parse_file()

defmodule Account do
 def parse_file({:ok, content}) Successful File.read 

matches first clause

|>

Tuple { :ok, content } becomes first
argument to next function

def parse_file({:error,
end

...

...

})error

Reading a file that does not exist matches the second clause. However, in this example, a warning  
is raised because the error variable is not being used from within the function.

Matching Unsuccessful Return Value

File.read("does-not-exist") |> Account.parse_file()

Unsuccessful File.read 
matches second clause

Tuple { :error, error } becomes first
argument to next function

Argument NOT used  
inside function body

Error parsing file

warning: variable error is unused
 account.exs:20

defmodule Account do
 ...

end

 do
 IO.puts "Error parsing file"
end

def parse_file({:error, })error

Matching Unsuccessful Return Value

Error parsing file

The underscore character is used to explicitly ignore unused values and avoid compiler warnings.

...and no compiler warnings! !

Explicitly ignore
the value matched...

File.read("does-not-exist") |> Account.parse_file()

defmodule Account do
 ...

end

 do
 IO.puts "Error parsing file"

end

def parse_file({:error, })_

Tuples & Maps
Keyword Lists & Defaults

Level 3–2

Listing Account Balance
An existing Account.balance function prints a balance based on a list of transactions.

Account.balance(transactions)

Balance: 200

Balance in dollars: $200

Balance in euros: €200

Balance in GBP: £200

We want to pass formatting options, like currency (dollars, euros, GBP) and symbols ($, £, €)...

Account.balance(transactions,) Options argument

Passing Options With Keyword Lists
A keyword list is a list of two-value tuples. They are typically used as the last argument in
function signatures, representing options passed to the function.

Keyword list shortcut

Keyword list full versionSame thing

[{:currency, "dollar"}, {:symbol, "$"}]

Account.balance(..., currency: "dollar", symbol: "$")

This is a tuple... ...and this is a tuple too!

Account.balance(...,)

To read values from keyword lists, we can use and the variableName[keyName] notation.

Reading Keyword Lists

Read values

Values read  
from options

formatting optionsdefmodule Account do
 def balance(transactions, options

[]

 currency = options[:currency]
 symbol = options[:symbol]

 balance = calculate_balance(transactions)
 "Balance in #{currency}: #{symbol}#{balance}"
 end
 ...
end

) do

Running With Options

Account.balance(transactions,  
 currency: "euros", symbol: "€") Balance in euros: €200

The Account.balance function now accepts formatting options!

defmodule Account do
 def balance(transactions, options
 currency = options[:currency]
 symbol = options[:symbol]

 balance = calculate_balance(transactions)
 "Balance in #{currency}: #{symbol}#{balance}"
 end
 ...
end

) do

Must Pass All Arguments

Account.balance(transactions)
** (UndefinedFunctionError) function Account.balance/1  
is undefined or private. Did you mean one of:

 * balance/2

The code currently expects options to always be passed. Otherwise, it raises an error.

Passing a single argument
breaks the code

Expects second argument
to always be passed

defmodule Account do
 def balance(transactions, options

 end
 ...
end

 currency = options[:currency]
 symbol = options[:symbol]

...

) do

Balance in : 200

Default Function Arguments

Account.balance(transactions)

The symbol sets a default value to be used when none is passed during function call.

Code does not break anymore...

\\

Defaults the options  
argument to empty list

...but it’s missing options!

No values returned!

defmodule Account do
 def balance(transactions, options

 end
 ...
end

 currency = options[:currency]
 symbol = options[:symbol]

...

 \\ [])) do

Defaults for Reading Keyword Lists

Account.balance(transactions)

Balance in dollars: $200

Using proper defaults!!

The logical OR operator can be used to return a default value when a key is not present.||

...then return this value  
on right side.

defmodule Account do
 def balance(transactions, options

If left side of || does
not return a value...

animated these dotted
lines and this side-text last

 end
 ...
end

...

 \\ [])) do
 || "dollar"

 || "$"
 currency = options[:currency]
 symbol = options[:symbol]

Using Keyword Lists With the Ecto Library
The Ecto library uses keyword lists to build SQL statements from Elixir code.

Repo.all(from u in User,
 where: u.age > 21,
 where: u.is_active == true)

This is a keyword list

SELECT * FROM users
WHERE age >= 21 AND is_active = TRUE

Generated SQL

Tuples & Maps
Maps

Level 3–3

Using Maps for Structures With Named Fields
We use curly braces with the percent sign to create maps, a collection of key-value pairs  
commonly used to represent a structure with named fields.

%{}

person = %{ "name" => "Brooke", "age" => 42 }

Keys

Values

Reading Maps With Map.fetch and Map.fetch!
The Map module from Elixir's standard offers a set of functions for working with maps.

Map.fetch(person, "name")

Map.fetch!(person, "name") "Brooke"

Map.fetch returns a tuple when key is present

Map.fetch! returns a value when key is present

Map.fetch(person, "banana") :error

{:ok, "Brooke"}

...and the :error atom when it’s not.

Map.fetch!(person, "banana")
...and raises an error when it’s not.

** (KeyError) key "banana" not found in: %{"name" => "Brooke,
 "age" => 42}
 (elixir) lib/map.ex:164: Map.fetch!/2

Reading Maps With Pattern Matching
We can also use pattern matching to read values from a map.

person = %{ "name" => "Brooke", "age" => 42 }

It’s a match!

It's a match!IO.puts name

warning: variable age is unused

Brooke

Warnings will NOT stop programs from
running, but it’s best not to have them.

Not being used

%{ "name" => name } = person, "age" => age

Matching Portions of a Map
Unlike tuples, with maps we can pattern match only the portion we are interested in.

Brooke

person = %{ "name" => "Brooke", "age" => 42 }
%{ "name" => name
IO.puts name

Only reads the value for
the name key on the map...

...other keys are ignored.

** (MatchError) no match of right hand  
 side value: [name: "Booke", age: 42]

List of tuples do not
support partial matchperson = [{:name, "Booke"}, {:age, 42}]

[{:name, name}] = person
IO.puts name

} = person

Advanced Pattern Matching With Maps
Even deeply nested keys in maps can be read using pattern matching.

person = %{ "name" => "Brooke",
 "address" => %{ "city" => "Orlando", "state" => "FL"}}
 
%{ "address" => %{ "state" => state }} = person
 
IO.puts "State: #{state}"

State: FL
Match on portion of
the nested keys

Nested keys

Keyword Lists or Maps?
Here’s a quick summary to help pick the appropriate data type.

When to use keyword lists?

When to use maps?

Account.balance(transactions,
 currency: "dollar", symbol: "$")

 To pass optional values to functions.

 To represent a structure as a key-value storage.

person = %{ "name" => "Brooke", "age" => 42 }
%{ "name" => name } = person

Control Flow
The case Statement

Level 4–1

Listing Content From a File
The function Account.list_transactions() takes a file name as argument and lists its contents.

defmodule Account do
 def list_transactions(filename) do

 if result == :ok do
 "Content: #{content}"
 else
 if result == :error do
 "Error: #{content}"
 end
 end
 end
end

 { result, content } = File.read(filename)

 end
 end
end

defmodule Account do
 def list_transactions(filename) do

Nested if Statements Are Hard to Read
Repeating variables (result, content) in nested if statements illustrate a common code smell.

Same variable used across
multiple if statements

 if result == :ok do
 "Content: #{content}"
 else
 if result == :error do
 "Error: #{content}"
 end

 { result, content } = File.read(filename)

Using case to Test Values Against Patterns
The case statement tests a value against a set of patterns.

...patterns to test against

defmodule Account do
 def list_transactions(filename) do

Value to be tested...

Return values from
successful matches

 end
 end
end

 case result do
 :ok -> "Content: #{content}"
 :error -> "Error: #{content}"

 { result, content } = File.read(filename)

Misleading Variable Names
Using result as the test value for the case statement is leading to the use of the same variable
name (content) for the content of the file (when result is :ok) or for the error (when result is :error).

This is an error type
and NOT the content...

defmodule Account do
 def list_transactions(filename) do

Let’s use something
else here...

 end
 end
end

 case result do
 :ok -> "Content: #{content}"
 :error -> "Error: #{content}"

 { result, content } = File.read(filename)

 end
 end
end

Better Variable Names With case
The case statement accepts tuples for the test values as well as for the patterns to be
tested against. This gives us more flexibility for naming variables.

defmodule Account do
 def list_transactions(filename) do

Test value is a tuple!

Tuples can be used
as patterns too!

More meaningful
variable name

 case File.read(filename) do
 { :ok, content } -> "Content: #{content}"
 { :error, type } -> "Error: #{type}"

No Code Smell & Works as Expected

Account.list_transactions("transactions.csv")

Account.list_transactions("does-not-exist") Error: enoent

Content: 01/12/2016,deposit,1000.00  
01/12/2016,withdrawal,10.00
01/13/2016,withdrawal,25.00,
...

defmodule Account do
 def list_transactions(filename) do

 end
 end
end

 case File.read(filename) do
 { :ok, content } -> "Content: #{content}"
 { :error, type } -> "Error: #{type}"

Using case with Guard Clauses

returns true when file content is
greater than 10 characters.

The case statement allows extra conditions to be specified with a guard clause.

built-in function

Account.list_transactions("loooong-list.csv") Content: (...)

defmodule Account do
 def list_transactions(filename) do

does not list
transactions

 case File.read(filename) do
 { :ok, content }
 when byte_size(content) > 10 -> "Content: (...)"
 { :ok, content } -> "Content: #{content}"
 { :error, type } -> "Error: #{type}"
 end
 end
end

Control Flow
The cond Statement

Level 4–2

Transferring Between Accounts
We’ll write a function to transfer money between accounts.

Account.transfer_amount(112233, 445566, 150.50) {:ok, 150.50}

Account.transfer_amount(112233, 445566, 980)

Account.transfer_amount(112233, 445566, 15000)

{:error, "Invalid Transfer"}

{:ok, 980}

Origin account Destination account Amount

Returns tuple with  
atom and amount

Invalid amount

Transfer Depends on Validation
The validation for a transfer involves the amount transferred and the hour of the day.

defmodule Account do
 def transfer_amount(from_account, to_account, amount) do
 hourOfDay = DateTime.utc_now.hour

 if !valid_transfer?(amount, hourOfDay) do
 {:error, "Invalid Transfer"}
 else
 perform_transfer(from_account, to_account, amount)
 end
 end
 ...
end

Part of Elixir’s standard library

Defined elsewhere in
this module

The Logic for the valid_transfer? Function
The amount allowed to be transferred depends on the time of the day.

Morning (before noon)
No more than $5000

Afternoon (before 6pm)
No more than $1000

Evening (after 6pm)
No more than $300

We could implement this using nested if statements... but we’ve been there before, remember?

And the Nested if Statements Attack Again!

Valid code, but hard to
read and maintain!

...
def valid_transfer?(amount, hourOfDay) do
 if hourOfDay < 12 do
 amount <= 5000
 else
 if hourOfDay < 18 do
 amount <= 1000
 else
 amount <= 300
 end
 end
end
...

The cond Statement

...
def valid_transfer?(amount, hourOfDay) do

The cond statement checks multiple conditions and finds the first one that evaluates to true.

Block runs when  
condition is true

condition to be checked

Catch all when none of the
previous conditions are true

end
...

 cond do
 hourOfDay < 12 -> amount <= 5000
 hourOfDay < 18 -> amount <= 1000
 true -> amount <= 300
 end

Running the Transfer
The Account.transfer_amount function is now complete!

Account.transfer_amount(112233, 445566, 150.50) {:ok, 150.50}

Account.transfer_amount(112233, 445566, 980) {:ok, 980}

Account.transfer_amount(112233, 445566, 1500)

{:error, "Invalid Transfer"}

Can’t transfer this
much after 12pm

To case or to cond?
We use case for matching on multiple patterns:

case File.read(filename) do
 { :ok, content } -> "Content: #{content}"
 { :error, type } -> "Error: #{type}"
end

cond do
 hourOfDay < 12 -> amount <= 5000
 hourOfDay < 18 -> amount <= 1000
 true -> amount <= 300
end

We use cond for checking multiple conditions:

The Mix Tool
Running Tasks & Organizing Projects

Level 5–1

Benefits of a Well-structured Project
Keeping a well-organized project and adopting a standard for project organization can
help in many ways. Here are three major benefits:

• Easier to navigate project files.

• Facilitates collaboration from other developers on the team.

• Facilitates onboarding new members.

Using Mix to Create a New Project
Mix is a build tool installed with Elixir that provides tasks for creating, compiling, and testing Elixir  
projects, managing its dependencies, and more.

mix new budget$

* creating README.md
...

Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

 cd budget
 mix test

Run "mix help" for more commands.

budget

README.md

config

lib

test

mix.exs

Name of the project Directories and files
created for us!

The only folder we need
to access for now

lib/budget.ex

Writing a New Function

budget

README.md

config

lib

test

mix.exs

budget.ex

We’ll define current_balance as part of the Budget module, created for us by the mix new command.

defmodule Budget do
 def current_balance(initial, spending) do
 initial - spending
 end
end

New function defined by us

Created by Mix

Running Programs With mix run
The -e option tells the mix run command to evaluate a given code in the context of the application.

$ mix run \  
-e "Budget.current_balance(100,20) |> IO.puts"

What the mix run command does:
1. Compiles the budget application.
2. Loads the generated bytecode into the Erlang Virtual Machine.
3. Detects the -e option and evaluates the argument as code.

Run from inside the
project root folder Backslash breaks command

into multiple lines

Compiling 1 file (.ex)  
80 Compiled by Mix

...

budget

The Difference Between File Extensions
Both .ex and .exs file extensions are treated the same way. The difference is intention: .ex files are  
meant to be compiled while .exs files are used for scripting.

budget_test.exs

test_helper.exs

budget

config

lib

test

mix.exs

budget.ex

.ex files
- Generates production artifacts (.beam files)
- Examples: lib files

Configuration
settings

Test files

config.exs .exs files
- Does NOT generate production artifacts
- Examples: configuration files, test files

Elixir.Budget.beam

Compiled artifact

$

Mix Help!

mix # Runs the default task (current: "mix run")
mix app.start # Starts all registered apps
mix app.tree # Prints the application tree
mix archive # Lists installed archives
mix archive.build # Archives this project into a .ez file
mix archive.install # Installs an archive locally
mix archive.uninstall # Uninstalls archives

...

mix help

We can run the mix help command to see the list of all available tasks.

The Mix Tool
Working With Third-party Dependencies

Level 5–2

Converting From Euro to Dollar

15.957446808510639

Let’s write a new function from_euro_to_dollar() that takes an amount in € euros as its single argument  
and converts it to US$ dollars. We’ll fetch the rate of the day from an external web service API.

RATES 
WEB SERVICE

GET to /rates

JSON response

mix run

ELIXIR CODE15.957... 3

1 2

4

$ mix run -e "Budget.Conversion.from_euro_to_dollar(15) |> IO.puts"

lib/budget/conversion.ex

budget

README.md

config

lib

test

mix.exs

budget.ex

budget

conversion.ex
Create new folder
and new file

The new function will be part of the Conversion module, which itself is a submodule of Budget.

New module part of the Budget module

defmodule Budget.Conversion do
 def from_euro_to_dollar(amount) do
 ...
 end
end

Creating a New Module

mix.exs

Third-party library dependencies

defmodule Budget.Mixfile do
 ...

 defp deps do
 [{:httpoison, "~> 0.10.0"}, {:poison, "~> 3.0"}]
 end
end

Declaring Third-party Dependencies
We use the mix.exs file to declare library dependencies our program depends on.

budget

config

lib

mix.exs

Version numbers following
Semantic Versioning

...

List of tuples

Installing Third-party Dependencies
The command mix deps.get fetches dependencies from a remote repository and installs them locally.

budget

config

lib

mix.exs

deps

httpoison

exjsx

$ mix deps.get

...

Each third-party dependency is
stored inside the deps directory.

Running dependency resolution
* Getting httpoison (Hex package)
 Checking package (https://repo.hex.pm/tarballs/httpoison-0.10.0.tar)
 Using locally cached package
* Getting poison (Hex package)
 Checking package (https://repo.hex.pm/tarballs/poison-3.0.0.tar)
 Using locally cached package
...

Making HTTP Calls With the HTTPoison Library
The HTTPoison library is what we’ll use to make HTTP calls to the remote web service.

lib/budget/conversion.ex

defmodule Budget.Conversion do

Using pattern matching to determine
whether the HTTP call was successful

Takes result of parse(response)
as first argument

 end
 ...
end

 def from_euro_to_dollar(amount) do
 url = "cs-currency-rates.codeschool.com/currency-rates"
 case HTTPoison.get(url) do
 {:ok, response} -> parse(response) |> convert(amount)
 {:error, _} -> "Error fetching rates"
 end

Parsing JSON With the JSX library

lib/budget/conversion.ex

We use pattern matching to store the response body on the json_response variable and  
the Poison library to parse JSON to an Elixir tuple.

defmodule Budget.Conversion do

defp means it’s a private function, not to
be called from outside its enclosing module.

Returns a tuple

 end
 ...
end

 ...
 defp parse(%{status_code: 200, body: json_response}) do
 Poison.Parser.parse(json_response)

From JSON to List of Tuples

[
 { "currency": "euro", "rate": 0.94 },
 { "currency": "pound", "rate": 0.79 }
]

RATES 
WEB SERVICE

JSON response

parse(response) |> convert(,amount)

The parse function converts the JSON response from the remote server to a tuple, and passes  
it as the first argument to the convert function.

JSON response

Elixir tuple

[
 %{"currency" => "euro", "rate" => 0.94},
 %{"currency" => "pound", "rate" => 0.79}
]}

{:ok,

Finding Rates and Converting

lib/budget/conversion.ex

The convert function grabs the list of tuples via pattern matching and calls find_euro to find the  
rate for € euro. Lastly, it performs the conversion operation.

defmodule Budget.Conversion do
 ...
 defp convert({:ok, rates}, amount) do
 rate = find_euro(rates)
 amount / rate
 end
 ...
end

Pattern matching

Using Recursion to Find the Rate
We’ll use pattern matching and recursion to find the rate for € euro from the list of all rates available.

lib/budget/conversion.ex

defmodule Budget.Conversion do
 ...
 defp find_euro([%{"currency" => "euro", "rate" => rate} | _]) do
 rate
 end  
 defp find_euro([_ | tail]) do
 find_euro(tail)
 end  
 defp find_euro([]) do
 raise "No rate found for Euro"
 end
end

...we return the rate!

No match on first element, so the function
calls itself with the rest of the list.

No match and no more elements
on the list, so we interrupt the
program by raising an error.

When this match is successful...

Running the Complete Program
We can run the program using mix run and see the expected results printed to the screen.

$ mix run -e "Budget.Conversion.from_euro_to_dollar(15) |> IO.puts"

RATES 
WEB SERVICE

GET to /rates

ELIXIR CODE JSON response

mix run

15.957446808510639

15.95744...

Running With the Rates Web Service Down
If the rates web service is unavailable, running the program prints the friendly error message.

Error fetching rates

RATES 
WEB SERVICE

GET to /rates

UNAVAILABLE

mix run

"Error fetching rates"

$ mix run -e "Budget.Conversion.from_euro_to_dollar(15) |> IO.puts"

ELIXIR CODE

